[1] M. Balat, M. Balat, Political, economic and environmental impacts of biomassbased hydrogen, Int. J. Hydrogen Energy 34(9)(2009)3589-3603. [2] H. Xiang, R.J. Xin, N. Prasongthum, P. Natewong, T. Sooknoi, J.W. Wang, P. Reubroycharoen, X.L. Fan, Catalytic conversion of bioethanol to value-added chemicals and fuels:A review, Resour. Chem. Mater. 1(1)(2022)47-68. [3] B. Cifuentes, J. Gomez, N. S anchez, L. Proano, F. Bustamante, M. Cobo, Bio-~ethanol steam reforming over monoliths washcoated with RhPt/CeO2eSiO2:The use of residual biomass to stably produce syngas, Int. J. Hydrogen Energy 46(5)(2021)4007-4018. [4] N. Sanchez, R. Ruiz, V. Hacker, M. Cobo, Impact of bioethanol impurities on steam reforming for hydrogen production:A review, Int. J. Hydrogen Energy 45(21)(2020)11923-11942. [5] O. Shtyka, Z. Dimitrova, R. Ciesielski, A. Kedziora, G. Mitukiewicz, J. Leyko, W. Maniukewicz, A. Czylkowska, T. Maniecki, Steam reforming of ethanol for hydrogen production:Influence of catalyst composition (Ni/Al2O3, Ni/Al2O3eCeO2, Ni/Al2O3eZnO) and process conditions, React. Kinet. Mech. Catal. 132(2)(2021)907-919. [6] M. Kourtelesis, T.S. Moraes, L.V. Mattos, D.K. Niakolas, F.B. Noronha, X. Verykios, The effects of support morphology on the performance of Pt/CeO2 catalysts for the low temperature steam reforming of ethanol, Appl. Catal. B Environ. 284(2021)119757. [7] T.S. Moraes, L.E.P. Borges, R. Farrauto, F.B. Noronha, Steam reforming of ethanol on Rh/SiCeO2 washcoated monolith catalyst:Stable catalyst performance, Int. J. Hydrogen Energy 43(1)(2018)115-126. [8] S. Yoo, S. Park, J.H. Song, D.H. Kim, Hydrogen production by the steam reforming of ethanol over K-promoted Co/Al2O3eCaO xerogel catalysts, Mol. Catal. 491(2020)110980. [9] A. Di Michele, A. Dell'Angelo, A. Tripodi, E. Bahadori, F. Sanchez, D. Motta, N. Dimitratos, I. Rossetti, G. Ramis, Steam reforming of ethanol over Ni/MgAl2O4 catalysts, Int. J. Hydrogen Energy 44(2)(2019)952-964. [10] T. Nejat, P. Jalalinezhad, F. Hormozi, Z. Bahrami, Hydrogen production from steam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support, J. Taiwan Inst. Chem. Eng. 97(2019)216-226. [11] I. Rossetti, M. Compagnoni, E. Finocchio, G. Ramis, A. Di Michele, A. Zucchini, S. Dzwigaj, Syngas production via steam reforming of bioethanol over NieBEA catalysts:A BTL strategy, Int. J. Hydrogen Energy 41(38)(2016)16878-16889. [12] S.S. Xu, T.J.A. Slater, H. Huang, Y.T. Zhou, Y.L. Jiao, C.M.A. Parlett, S.L. Guan, S. Chansai, S.J. Xu, X.R. Wang, C. Hardacre, X.L. Fan, Developing silicalite-1 encapsulated Ni nanoparticles as sintering-/coking-resistant catalysts for dry reforming of methane, Chem. Eng. J. 446(2022)137439. [13] P. Wetchasat, S. Salakhum, T. Imyen, D. Suttipat, W. Wannapakdee, M. Ketkaew, A. Prasertsab, P. Kidkhunthod, T. Witoon, C. Wattanakit, One-pot synthesis of ultra-small Pt dispersed on hierarchical zeolite nanosheet surfaces for mild hydrodeoxygenation of 4-propylphenol, Catalysts 11(3)(2021)333. [14] R. Kore, R. Srivastava, B. Satpati, ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents, Chemistry 20(36)(2014)11511-11521. [15] Y. Gao, B.H. Zheng, G. Wu, F.W. Ma, C.T. Liu, Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization, RSC Adv. 6(87)(2016)83581-83588. [16] Q.M. Sun, N. Wang, Q.M. Bing, R. Si, J.Y. Liu, R.S. Bai, P. Zhang, M.J. Jia, J.H. Yu, Subnanometric hybrid Pd-M (OH)2, M=Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation, Chem 3(3)(2017)477-493. [17] M. Pérez-Page, J. Makel, K. Guan, S.L. Zhang, J. Tringe, R.H.R. Castro, P. Stroeve, Gas adsorption properties of ZSM-5 zeolites heated to extreme temperatures, Ceram. Int. 42(14)(2016)15423-15431. [18] M.C. Tang, L. Xu, M.H. Fan, Effect of Ce on 5 wt% Ni/ZSM-5 catalysts in the CO2 reforming of CH4 reaction, Int. J. Hydrogen Energy 39(28)(2014)15482-15496. [19] J. Grand, H. Awala, S. Mintova, Mechanism of zeolites crystal growth:New findings and open questions, CrystEngComm 18(5)(2016)650-664. [20] F.X. Feng, L. Wang, X.W. Zhang, Q.F. Wang, Self-pillared ZSM-5-supported Ni nanoparticles as an efficient catalyst for upgrading oleic acid to aviation-fuelrange-alkanes, Ind. Eng. Chem. Res. 58(29)(2019)13112-13121. [21] Z.P. Hu, C.C. Weng, C. Chen, Z.Y. Yuan, Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts:A comparative study of the preparation methods, Appl. Catal. Gen. 562(2018)49-57. [22] Y. Cui, J. Qiu, B. Chen, L.L. Xu, M.D. Chen, C.E. Wu, G. Cheng, B. Yang, N. Wang, X. Hu, CO2 methanation over Ni/ZSM-5 catalysts:The effects of support morphology and La2O3 modification, Fuel 324(2022)124679. [23] B. Sarkar, R. Tiwari, R.K. Singha, S. Suman, S. Ghosh, S.S. Acharyya, K. Mantri, L. N.S. Konathala, C. Pendem, R. Bal, Reforming of methane with CO2 over Ni nanoparticle supported on mesoporous ZSM-5, Catal. Today 198(1)(2012)209-214. [24] B. Saini, A.P. Tathod, J. Diwakar, S. Arumugam, N. Viswanadham, Nickel nanoparticles confined in ZSM-5 framework as an efficient catalyst for selective hydrodeoxygenation of lignin-derived monomers, Biomass Bioenergy 157(2022)106350. [25] Y.L. Jiao, L. Forster, S.J. Xu, H.H. Chen, J.F. Han, X.Q. Liu, Y.T. Zhou, J.M. Liu, J.S. Zhang, J.H. Yu, C. D'Agostino, X.L. Fan, Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity:Converting tetrahedral extraframework Al into framework sites by post treatment, Angew. Chem. Int. Ed Engl. 59(44)(2020)19478-19486. [26] D. Hartanto, L. Sin Yuan, S. Mutia Sari, D. Sugiarso, I. Kris Murwarni, T. Ersam, D. Prasetyoko, H. Nur, The use of the combination of ftir, pyridine adsorption, 27Al and 29Si MAS NMR to determine the bronsted and lewis acidic sites,J. Teknologi 78(6)(2016)223-228. [27] S. Inagaki, N. Yamada, M. Nishii, Y. Nishi, Y. Kubota, Control of framework Al distribution in ZSM-5 zeolite via post-synthetic TiCl4 treatment, Microporous Mesoporous Mater. 302(2020)110223. [28] F. Frusteri, G. Bonura, Compendium of Hydrogen Energy, Woodhead Publishing, Oxford, 2015. [29] M.D. Zhurka, A.A. Lemonidou, J.A. Anderson, P.N. Kechagiopoulos, Kinetic analysis of the steam reforming of ethanol over Ni/SiO2 for the elucidation of metal-dominated reaction pathways, React. Chem. Eng. 3(6)(2018)883-897. [30] F.X. Feng, X.P. Niu, L. Wang, X.W. Zhang, Q.F. Wang, TEOS-modified Ni/ZSM-5 nanosheet catalysts for hydroconversion of oleic acid to high-performance aviation fuel:Effect of acid spatial distribution, Microporous Mesoporous Mater. 291(2020)109705. [31] M. Benito, J.L. Sanz, R. Isabel, R. Padilla, R. Arjona, L. Daza, Bio-ethanol steam reforming:Insights on the mechanism for hydrogen production, J. Power Sources 151(2005)11-17. [32] A.N. Fatsikostas, X.E. Verykios, Reaction network of steam reforming of ethanol over Ni-based catalysts, J. Catal. 225(2)(2004)439-452. [33] B. Roy, U. Martinez, K. Loganathan, A.K. Datye, C.A. Leclerc, Effect of preparation methods on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol:Part I-catalytic activity, Int. J. Hydrogen Energy 37(10)(2012)8143-8153. [34] D.J. Haynes, D. Shekhawat, Fuel Cells:Technologies for Fuel Processing, Elsevier, Amsterdam, 2011. [35] M. Pudukudy, Z. Yaakob, Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes, Chem. Eng. J. 262(2015)1009-1021. [36] B.D. Gould, X.Y. Chen, J.W. Schwank, n-Dodecane reforming over nickel-based monolith catalysts:Deactivation and carbon deposition, Appl. Catal. Gen. 334(1-2)(2008)277-290. [37] A.G. Bannov, M.V. Popov, P.B. Kurmashov, Thermal analysis of carbon nanomaterials:Advantages and problems of interpretation, J. Therm. Anal. Calorim. 142(1)(2020)349-370. [38] A.A.S. Gonçalves, P.B. Faustino, J.M. Assaf, M. Jaroniec, One-pot synthesis of mesoporous Ni-Ti-Al ternary oxides:Highly active and selective catalysts for steam reforming of ethanol, ACS Appl. Mater. Interfaces 9(7)(2017)6079-6092. [39] S.Y. Wang, B. He, R. Tian, X. Wu, X. An, Y.P. Liu, J. Su, Z.H. Yu, X.M. Xie, Novel core-shell-like Ni-supported hierarchical beta zeolite catalysts on bioethanol steam reforming, Int. J. Hydrogen Energy 45(33)(2020)16409-16420. [40] A. Kumar, R. Prasad, Y.C. Sharma, Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation, Chin. J. Chem. Eng. 27(3)(2019)677-684. [41] A. Rodriguez-Gomez, A. Caballero, Bimetallic Ni-Co/SBA-15 catalysts for reforming of ethanol:How cobalt modifies the nickel metal phase and product distribution, Mol. Catal. 449(2018)122-130. [42] J. Vicente, C. Montero, J. Erena, M.J. Azkoiti, J. Bilbao, A.G. Gayubo, Coke~deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor, Int. J. Hydrogen Energy 39(24)(2014)12586-12596. |