[1] A. Kumar, P. Daw, D. Milstein, Homogeneous catalysis for sustainable energy:hydrogen and methanol economies, fuels from biomass, and related topics, Chem. Rev. 122(1)(2022)385-441. [2] H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Photocatalytic solar hydrogen production from water on a 100-m2 scale, Nature 598(7880)(2021)304-307. [3] J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, J.S. Lee, Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge, Chem. Soc. Rev. 48(7)(2019)1908-1971. [4] Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers, Int. J. Hydrogen Energy 44(33)(2019)18179-18192. [5] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414(6861)(2001)353-358. [6] C.F. Shih, T. Zhang, J.H. Li, C.L. Bai, Powering the future with liquid sunshine, Joule 2(10)(2018)1925-1949. [7] J.K. Lee, J.B. Ko, D.H. Kim, Methanol steam reforming over Cu/ZnO/Al2O3 catalyst:kinetics and effectiveness factor, Appl. Catal., A 278(1)(2004)25-35. [8] W. Setthapun, S.K. Bej, L.T. Thompson, Carbide and nitride supported methanol steam reforming catalysts:parallel synthesis and high throughput screening, Top. Catal. 49(1)(2008)73-80. [9] F. Bossola, T. Roongcharoen, M. Coduri, C. Evangelisti, F. Somodi, L. Sementa, A. Fortunelli, V. Dal Santo, Discovering indium as hydrogen production booster for a Cu/SiO2 catalyst in steam reforming of methanol, Appl. Catal., B 297(2021)120398. [10] W.J. Ouyang, C.H. Yao, K.H. Ye, Y.X. Guo, L. Li, Z. Lin, Synergetic photocatalytic and thermocatalytic aqueous phase reforming of methanol for hydrogen production based on noble metal/photosensitive supports catalysts, Int. J. Hydrogen Energy 47(46)(2022)19989-19998. [11] Y. Yao, X. Gao, Z. Li, X. Meng, Photocatalytic reforming for hydrogen evolution:a review, Catalysts 335(2020)10-27. [12] Y.F. Zhao, W. Gao, S.W. Li, G.R. Williams, A.H. Mahadi, D. Ma, Solar-versus thermal-driven catalysis for energy conversion, Joule 3(4)(2019)920-937. [13] H. Lee, Y. Park, M. Kang, Synthesis of characterization of ZnxTiyS and its photocatalytic activity for hydrogen production from methanol/water photo-splitting, J. Ind. Eng. Chem. 19(4)(2013)1162-1168. [14] X.X. Yu, L.L. Yang, Y.M. Xuan, X.L. Liu, K. Zhang, Solar-driven low-temperature reforming of methanol into hydrogen via synergetic photo-and thermocatalysis, Nano Energy 84(2021)105953. [15] Q.A. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting:Mechanisms, challenges, and design strategies, Chem. Rev. 120(2)(2020)919-985. [16] M.L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids, Phys. Rev. B 32(12)(1985)7988-7991. [17] Y. Xu, S.P. Gao, Band gap of C3N4 in the GW approximation, Int. J. Hydrogen Energy 37(15)(2012)11072-11080. [18] S. Dyjak, W. Kiciński, A. Huczko, THermite-driven melamine condensation to CxNyHz graphitic ternary polymers:towards an instant, large-scale synthesis of g-C3N4, J. Mater. Chem. A 3(18)(2015)9621-9631. [19] E. Haque, J.W. Jun, S.N. Talapaneni, A. Vinu, S.H. Jhung, Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol, J. Mater. Chem. 20(48)(2010)10801-10803. [20] H. Wang, M. Thangamuthu, Z.B. Wu, J.L. Yang, H.Z. Yuan, M.K. Bayazit, J.W. Tang, Self-assembled sulphur doped carbon nitride for photocatalytic water reforming of methanol, Chem. Eng. J. 445(2022)136790. [21] K.X. Li, Z.X. Zeng, L.S. Yan, S.L. Luo, X.B. Luo, M.X. Huo, Y.H. Guo, Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity, Appl. Catal., B 165(2015)428-437. [22] Q.L. Xu, B. Cheng, J.G. Yu, G. Liu, Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst, Carbon 118(2017)241-249. [23] Y.D. Hu, Y.T. Qu, Y.S. Zhou, Z.Y. Wang, H.J. Wang, B. Yang, Z.Q. Yu, Y.E. Wu, Single Pt atom-anchored C3N4:a bridging Pt-N bond boosted electron transfer for highly efficient photocatalytic H2 generation, Chem. Eng. J. 412(2021)128749. [24] Z.K. Wu, J. Suhan, R.C. Jin, One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters, J. Mater. Chem. 19(5)(2009)622-626. [25] S.E. Eklund, D.E. Cliffel, Synthesis and catalytic properties of soluble platinum nanoparticles protected by a thiol monolayer, Langmuir 20(14)(2004)6012-6018. [26] Y.E. Jeong, P.A. Kumar, H.L. Choi, K.Y. Lee, H.P. Ha, Catalytic activity and thermal stability of arc plasma deposited Pt nano-particles on CeO2-Al2O3, J. Nanosci. Nanotechnol. 15(11)(2015)8494-8501. [27] P. Li, L. Liu, W. An, H, Wang, H, Guo, Y. Liang, Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO to ethanol, Appl. Catal. B Environ. 266(2020)118618-118632. [28] Z.Y. Zhou, X.W. Kang, Y. Song, S.W. Chen, Enhancement of the electrocatalytic activity of Pt nanoparticles in oxygen reduction by chlorophenyl functionalization, Chem. Commun. 48(28)(2012)3391-3393. [29] G.G. Liu, W. Zhou, Y.R. Ji, B. Chen, G.T. Fu, Q.B. Yun, S.M. Chen, Y.X. Lin, P.F. Yin, X.Y. Cui, J.W. Liu, F.Q. Meng, Q.H. Zhang, L. Song, L. Gu, H. Zhang, Hydrogen-intercalation-induced lattice expansion of Pd@Pt core-shell nanoparticles for highly efficient electrocatalytic alcohol oxidation, J. Am. Chem. Soc. 143(29)(2021)11262-11270. [30] T. Chen, Z.C. Feng, G.P. Wu, J.Y. Shi, G.J. Ma, P.L. Ying, C. Li, Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy, J. Phys. Chem. C 111(22)(2007)8005-8014. [31] A.M. Tarditi, M.F. Mori, L.M. Cornaglia, Determination of the metal dispersion of supported catalysts using XPS, Top. Catal. 62(12-16)(2019)822-837. [32] Y. Zhang, J. Di, P.H. Ding, J.Z. Zhao, K.Z. Gu, X.L. Chen, C. Yan, S. Yin, J.X. Xia, H.M. Li, Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation, J. Colloid Interface Sci. 553(2019)530-539. [33] Y.B. Huang, J. Liu, C. Zhao, X.H. Jia, M.M. Ma, Y.Y. Qian, C. Yang, K. Liu, F.R. Tan, Z.J. Wang, X.B. Li, S.C. Qu, Z.G. Wang, Facile synthesis of defect-modified thin-layered and porous g-C3N4 with synergetic improvement for photocatalytic H2 production, ACS Appl. Mater. Interfaces 12(47)(2020)52603-52614. [34] Q. Yang, T. Wang, Z.Q. Zheng, B. Xing, C. Li, B.X. Li, Constructing interfacial active sites in Ru/g-C3N4-x photocatalyst for boosting H2 evolution coupled with selective benzyl-alcohol oxidation, Appl. Catal., B 315(2022)121575. [35] K.L. Huang, C.H. Li, J. Yang, R. Zheng, W.T. Wang, L. Wang, Platinum nanodots modified Nitrogen-vacancies g-C3N4 Schottky junction for enhancing photocatalytic hydrogen evolution, Appl. Surf. Sci. 581(2022)152298. [36] Y.D. Zou, B.B. Yang, Y. Liu, Y.A. Ren, J.H. Ma, X.R. Zhou, X.W. Cheng, Y.H. Deng, Controllable interface-induced co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance, Adv. Funct. Mater. 28(50)(2018)1806214-1806225. [37] W.N. Xing, W.G. Tu, M. Ou, S.Y. Wu, S.M. Yin, H.J. Wang, G. Chen, R. Xu, Anchoring active Pt2+/Pt0 hybrid nanodots on g-C3N4 nitrogen vacancies for photocatalytic H2 evolution, ChemSusChem 12(9)(2019)2029-2034. [38] Y.Q. Zhu, T. Wang, T. Xu, Y.X. Li, C.Y. Wang, Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution, Appl. Surf. Sci. 464(2019)36-42. [39] S. Wang, D.X. Guo, M.Y. Zong, C.Z. Fan, X. Jun, D.H. Wang, Unravelling the strong metal-support interaction between Ru quantum dots and g-C3N4 for visible-light photocatalytic nitrogen fixation, Appl. Catal., A 617(2021)118112. [40] N. Zhang, C. Han, Y.J. Xu, J.J. Foley IV, D.T. Zhang, J. Codrington, S.K. Gray, Y.G. Sun, Near-field dielectric scattering promotes optical absorption by platinum nanoparticles, Nat. Photonics 10(7)(2016)473-482. [41] W.J. Fang, Z. Qin, J.Y. Liu, Z.D. Wei, Z. Jiang, W.F. Shangguan, Photo-switchable pure water splitting under visible light over nano-Pt@P25 by recycling scattered photons, Appl. Catal., B 236(2018)140-146. [42] J.X. Wu, X.X. Xi, W. Zhu, Z. Yang, P. An, Y.J. Wang, Y.M. Li, Y.F. Zhu, W.Q. Yao, G.Y. Jiang, Boosting photocatalytic hydrogen evolution via regulating Pt chemical states, Chem. Eng. J. 442(2022)136334. [43] K.A. Almusaiteer, S.I. Al-Mayman, A. Mamedov, Y.S. Al-Zeghayer, In situ IR studies on the mechanism of dimethyl carbonate synthesis from methanol and carbon dioxide, Catalysts 11(4)(2021)517. [44] M.T. Chen, Y.S. Lin, Y.F. Lin, H.P. Lin, J.L. Lin, Dissociative adsorption of HCOOH, CH3OH, and CH2O on MCM-41, J. Catal. 228(1)(2004)259-263. [45] M. Manzoli, A. Chiorino, F. Boccuzzi, Decomposition and combined reforming of methanol to hydrogen:a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2, Appl. Catal., B 57(3)(2005)201-209. [46] L.L. Lin, W. Zhou, R. Gao, S.Y. Yao, X.A. Zhang, W.Q. Xu, S.J. Zheng, Z. Jiang, Q.L. Yu, Y.W. Li, C.A. Shi, X.D. Wen, D. Ma, Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts, Nature 544(7648)(2017)80-83. [47] S. Cao, T.S. Chan, Y.R. Lu, X.H. Shi, B. Fu, Z.J. Wu, H.M. Li, K. Liu, S. Alzuabi, P. Cheng, M. Liu, T. Li, X.B. Chen, L.Y. Piao, Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes, Nano Energy 67(2020)104287. [48] X.Y. Wang, D.D. Li, Z.R. Gao, Y. Guo, H.B. Zhang, D. Ma, The nature of interfacial catalysis over Pt/NiAl2O4 for hydrogen production from methanol reforming reaction, J. Am. Chem. Soc. 145(2)(2023)905-918. [49] J.L. Li, B.W. Sheng, Y.Q. Chen, J.J. Yang, T. Ma, C. You, Y.X. Li, T.Q. Yu, J. Song, H. Pan, X.Q. Wang, B.W. Zhou, Nickel-iron bimetal as a cost-effective cocatalyst for light-driven hydrogen release from methanol and water, ACS Catal. 13(15)(2023)10153-10160. |