中国化学工程学报 ›› 2023, Vol. 64 ›› Issue (12): 292-320.DOI: 10.1016/j.cjche.2023.05.018
• Review • 上一篇
Ahmed M. Elgarahy1,2, M.G. Eloffy3, Eric Guibal4, Huda M. Alghamdi5, Khalid Z. Elwakeel2,5
收稿日期:
2023-01-17
修回日期:
2023-05-22
出版日期:
2023-12-28
发布日期:
2024-02-05
通讯作者:
Eric Guibal,E-mail:eric.guibal@mines-ales.fr;Khalid Z. Elwakeel,E-mail:khalid_elwakeel@sci.psu.edu.eg
基金资助:
Ahmed M. Elgarahy1,2, M.G. Eloffy3, Eric Guibal4, Huda M. Alghamdi5, Khalid Z. Elwakeel2,5
Received:
2023-01-17
Revised:
2023-05-22
Online:
2023-12-28
Published:
2024-02-05
Contact:
Eric Guibal,E-mail:eric.guibal@mines-ales.fr;Khalid Z. Elwakeel,E-mail:khalid_elwakeel@sci.psu.edu.eg
Supported by:
摘要: Indeed, polymeric materials have thrived in worldwide sectors over the last five decades due to their versatility and durability, to the point that we can no longer envisage a product that does not contain them. However, many synthetic polymers that have been produced are mostly sourced from petroleum and coal as raw materials, making them environmentally incompatible because they cannot be integrated with what is a natural recycling system. One of the most important aspects of the transition to a circular bioeconomy (CBE) is the provision of more sustainable strategies for resource and waste management. Considering the environmental consequences associated with petroleum-based polymers (PBPs), natural biopolymers, originating from biomass, can be conceived as a promising solution to gradually replace the PBPs, and address, and resolve the potential challenges and prevailing research gaps in the PBPs. The biopolymers have significant advantages over PBPs in terms of low-cost/zero-cost precursors, environmental friendliness, and user-friendliness. The present review dissects the sources, synthesis pathways, structures, characterization, and employment of biopolymers and their composites in water and wastewater treatment applications via different scenarios. Furthermore, the CBE model framework proposes potential approaches to applying CBE principles in the wastewater management sector, with a heavy emphasis on not only technology but also organizational and societal reforms. To sum up, the reliance on biopolymers can be considered a crucial tool for assessing the global progress toward CBE, as well as future environmental management and planning.
Ahmed M. Elgarahy, M.G. Eloffy, Eric Guibal, Huda M. Alghamdi, Khalid Z. Elwakeel. Use of biopolymers in wastewater treatment: A brief review of current trends and prospects[J]. 中国化学工程学报, 2023, 64(12): 292-320.
Ahmed M. Elgarahy, M.G. Eloffy, Eric Guibal, Huda M. Alghamdi, Khalid Z. Elwakeel. Use of biopolymers in wastewater treatment: A brief review of current trends and prospects[J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 292-320.
[1] M. Gilbert, Chapter 1 - Plastics Materials: Introduction and Historical Development, In: M. Gilbert (Ed.), Brydson's Plastics Materials (8th edition), Butterworth-Heinemann, 1-18 (2017). [2] V. Shanmugam, O. Das, R.E. Neisiany, K. Babu, S. Singh, M.S. Hedenqvist, F. Berto, S. Ramakrishna, Polymer recycling in additive manufacturing: An opportunity for the circular economy, Mater. Circ. Econ. 2 (1) (2020) 1–11. [3] F.S. Al-Jahwari, T. Pervez, The potential of environmental-friendly biopolymers as an alternative to conventional petroleum-based polymers. Encyclopedia of Renewable and Sustainable Materials. Amsterdam: Elsevier, (2020) 200–206. [4] A. George, M.R. Sanjay, R. Srisuk, J. Parameswaranpillai, S. Siengchin, A comprehensive review on chemical properties and applications of biopolymers and their composites, Int. J. Biol. Macromol. 154 (2020) 329–338. [5] A. Kartik, D. Akhil, D. Lakshmi, K. Panchamoorthy Gopinath, J. Arun, R. Sivaramakrishnan, A. Pugazhendhi, A critical review on production of biopolymers from algae biomass and their applications, Bioresour. Technol. 329 (2021) 124868. [6] O.W. Awe, Y.Q. Zhao, A. Nzihou, D.P. Minh, N. Lyczko, A review of biogas utilisation, purification and upgrading technologies, Waste Biomass Valorization 8 (2) (2017) 267–283. [7] V.V. Devadas, K.S. Khoo, W.Y. Chia, K.W. Chew, H.S.H. Munawaroh, M.K. Lam, J.W. Lim, Y.C. Ho, K.T. Lee, P.L. Show, Algae biopolymer towards sustainable circular economy, Bioresour. Technol. 325 (2021) 124702. [8] E. Khademian, E. Salehi, H. Sanaeepur, F. Galiano, A. Figoli, A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies, Sci. Total Environ. 738 (2020) 139829. [9] L.J. Falarz, M.K. Deyholos, G.Q. Chen, Plant carbohydrates and production of renewable biofuel from starch, sugar, and cellulose. Plant Bioproducts. New York, NY: Springer New York, (2018) 87–107. [10] B.G. Fouda-Mbanga, E. Prabakaran, K. Pillay, Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review, Biotechnol. Rep. 30 (2021) e00609. [11] A.M. Díez-Pascual, Synthesis and applications of biopolymer composites, Int. J. Mol. Sci. 20 (9) (2019) 2321. [12] M. Özacar, İ.A. Şengil, Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles, Colloids Surf. A 229 (1–3) (2003) 85–96. [13] P. Maćczak, H. Kaczmarek, M. Ziegler-Borowska, K. Węgrzynowska-Drzymalska, A. Burkowska-But, The use of chitosan and starch-based flocculants for filter backwash water treatment, Materials 15 (3) (2022) 1056. [14] K.Z. Elwakeel, Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins, Desalination 250 (1) (2010) 105–112. [15] F.C. Yang, P. Yang, Biopolymer-based membrane adsorber for removing contaminants from aqueous solution: Progress and prospects, Macromol. Rapid Commun. 43 (3) (2022) 2100669. [16] E. Sohouli, N. Irannejad, A. Ziarati, H. Ehrlich, M. Rahimi-Nasrabadi, F. Ahmadi, R. Luque, Application of polysaccharide-based biopolymers as supports in photocatalytic treatment of water and wastewater: A review, Environ. Chem. Lett. 20 (6) (2022) 3789–3809. [17] P.R. Yaashikaa, P. Senthil Kumar, S. Karishma, Review on biopolymers and composites – Evolving material as adsorbents in removal of environmental pollutants, Environ. Res. 212 (Pt A) (2022) 113114. [18] K.Z. Elwakeel, Environmental application of chitosan resins for the treatment of water and wastewater: A Review, J. Dispersion Sci. Technol. 31(3) (2010) 273-288. [19] A.M. Elgarahy, K.Z. Elwakeel, S.H. Mohammad, G.A. Elshoubaky, A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process, Clean. Eng. Technol. 4 (2021) 100209. [20] V. Flaris, G. Singh, Recent developments in biopolymers, J. Vinyl Addit. Technol. 15 (1) (2009) 1–11. [21] Y.J. Zhong, P. Godwin, Y.C. Jin, H.N. Xiao, Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review, Adv. Ind. Eng. Polym. Res. 3 (1) (2020) 27–35. [22] A. Steinbüchel, Non-biodegradable biopolymers from renewable resources: Perspectives and impacts, Curr. Opin. Biotechnol. 16 (6) (2005) 607–613. [23] G.P. Udayakumar, S. Muthusamy, B. Selvaganesh, N. Sivarajasekar, K. Rambabu, S. Sivamani, N. Sivakumar, J.P. Maran, A. Hosseini-Bandegharaei, Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment, Biotechnol. Adv. 52 (2021) 107815. [24] R.P. Babu, K. O'Connor, R. Seeram, Current progress on bio-based polymers and their future trends, Prog. Biomater. 2 (1) (2013) 8. [25] M.C. Biswas, B. Jony, P.K. Nandy, R.A. Chowdhury, S. Halder, D. Kumar, S. Ramakrishna, M. Hassan, M.A. Ahsan, M.E. Hoque, M. Ali Imam, Recent advancement of biopolymers and their potential biomedical applications, J. Polym. Environ. 30 (1) (2022) 51–74. [26] D.L. Kaplan, Introduction to biopolymers from renewable resources. Kaplan DL, Biopolymers from Renewable Resources. Berlin, Heidelberg: Springer, 1998: 1-29. [27] N.A. Pattanashetti, G.B. Heggannavar, M.Y. Kariduraganavar, Smart biopolymers and their biomedical applications, Procedia Manuf. 12 (2017) 263–279. [28] R. Rebelo, M. Fernandes, R. Fangueiro, Biopolymers in medical implants: A brief review, Procedia Eng. 200 (2017) 236–243. [29] P. Yadav, Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review, J. Clinical Diagnostic Research (2015): ZE21–ZE25. [30] A. Koyyada, P. Orsu, Natural gum polysaccharides as efficient tissue engineering and drug delivery biopolymers, J. Drug Deliv. Sci. Technol. 63 (2021) 102431. [31] A.V. Samrot, T.C. Sean, T. Kudaiyappan, U. Bisyarah, A. Mirarmandi, E. Faradjeva, A. Abubakar, H.H. Ali, J.L.A. Angalene, S. Suresh Kumar, Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review, Int. J. Biol. Macromol. 165 (2020) 3088–3105. [32] S.H. Othman, Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler, Agric. Agric. Sci. Procedia 2 (2014) 296–303. [33] L.A. Anderson, M.A. Islam, K.L.J. Prather, Synthetic biology strategies for improving microbial synthesis of “green” biopolymers, J. Biol. Chem. 293 (14) (2018) 5053–5061. [34] A. Sobhan, K. Muthukumarappan, L. Wei, Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities, Food Packag. Shelf Life 30 (2021) 100745. [35] M. Ghorbani, M. Hassan Vakili, E. Ameri, Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment, Mater. Today Commun. 28 (2021) 102560. [36] A.E. Losini, A.C. Grillet, M. Bellotto, M. Woloszyn, G. Dotelli, Natural additives and biopolymers for raw earth construction stabilization — A review, Constr. Build. Mater. 304 (2021) 124507. [37] M. Horue, I. Rivero Berti, M.L. Cacicedo, G.R. Castro, Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review, Bioresour. Technol. 340 (2021) 125671. [38] ES Thomas, N Ninan, S Mohan, E Francis, Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs. Apple Academic Press, (2012) 147–150. [39] P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, S. Karthikeyan, Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook, Bioresour. Technol. 242 (2017) 295–303. [40] A.J. Sayyed, D.V. Pinjari, S.H. Sonawane, B.A. Bhanvase, J. Sheikh, M. Sillanpää, Cellulose-based nanomaterials for water and wastewater treatments: A review, J. Environ. Chem. Eng. 9 (6) (2021) 106626. [41] A. Tribot, G. Amer, M. Abdou Alio, H. de Baynast, C. Delattre, A. Pons, J.-D. Mathias, J.-M. Callois, C. Vial, P. Michaud, C.-G. Dussap, Wood-lignin: Supply, extraction processes and use as bio-based material, Eur. Polym. J. 112 (2019) 228–240. [42] Y.Y. Ge, Z.L. Li, Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review, ACS Sustainable Chem. Eng. 6 (5) (2018) 7181–7192. [43] J. Rajesh Banu, S. Kavitha, R. Yukesh Kannah, T. Poornima Devi, M. Gunasekaran, S.H. Kim, G. Kumar, A review on biopolymer production via lignin valorization, Bioresour. Technol. 290 (2019) 121790. [44] A.U.R. Akond, J.G. Lynam, Deep eutectic solvent extracted lignin from waste biomass: Effects as a plasticizer in cement paste, Case Stud. Constr. Mater. 13 (2020) e00460. [45] N. Supanchaiyamat, K. Jetsrisuparb, J.T.N. Knijnenburg, D.C.W. Tsang, A.J. Hunt, Lignin materials for adsorption: Current trend, perspectives and opportunities, Bioresour. Technol. 272 (2019) 570–581. [46] A. Labidi, A.M. Salaberria, S.C.M. Fernandes, J. Labidi, M. Abderrabba, Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies, J. Taiwan. Inst. Chem. Eng. 65 (2016) 140–148. [47] M. Kostag, O.A. El Seoud, Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review, Carbohydr. Polym. Technol. Appl. 2 (2021) 100079. [48] C.W. Cho, C.R. Lim, B.G. Cho, S.B. Mun, J.W. Choi, Y.F. Zhao, S. Kim, Y.S. Yun, Development of prediction models for adsorption properties of chitin and chitosan for micropollutants, Chem. Eng. J. 426 (2021) 131341. [49] D.T. Dou, D.L. Wei, X. Guan, Z.J. Liang, L.H. Lan, X.D. Lan, P.R. Liu, H.Q. Mo, P. Lan, Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels, J. Hazard. Mater. 423 (2022) 127137. [50] M. Li, P. Lan, Y.X. Liao, S.X. Sun, H.Q. Liu, Novel CaCO3/chitin aerogel: Synthesis and adsorption performance toward Congo red in aqueous solutions, Int. J. Biol. Macromol. 181 (2021) 786–792. [51] S. Sarode, P. Upadhyay, M.A. Khosa, T. Mak, A. Shakir, S. Song, A. Ullah, Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan, Int. J. Biol. Macromol. 121 (2019) 1086–1100. [52] A.C. Sadiq, A. Olasupo, W.S.W. Ngah, N.Y. Rahim, F.B.M. Suah, A decade development in the application of chitosan-based materials for dye adsorption: A short review, Int. J. Biol. Macromol. 191 (2021) 1151–1163. [53] N.G. Kandile, H.M. Mohamed, New chitosan derivatives inspired on heterocyclic anhydride of potential bioactive for medical applications, Int. J. Biol. Macromol. 182 (2021) 1543–1553. [54] G. Lodhi, Y.S. Kim, J.W. Hwang, S.K. Kim, Y.J. Jeon, J.Y. Je, C.B. Ahn, S.H. Moon, B.T. Jeon, P.J. Park, Chitooligosaccharide and its derivatives: Preparation and biological applications, Biomed Res. Int. 2014 (2014) 654913. [55] Y.Z. Zhang, M.W. Zhao, Q. Cheng, C. Wang, H.J. Li, X.G. Han, Z.H. Fan, G.Y. Su, D. Pan, Z.Y. Li, Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review, Chemosphere 279 (2021) 130927. [56] O.B.A. Agbaje, J.G. Dominguez, D.E. Jacob, Organic biopolymers of Venus clams: Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure, Biochem. Biophys. Rep. 26 (2021) 100939. [57] M. Dubus, H. Rammal, H. Alem, N.B. Bercu, I. Royaud, F. Quilès, F. Boulmedais, S.C. Gangloff, C. Mauprivez, H. Kerdjoudj, Boosting mesenchymal stem cells regenerative activities on biopolymers-calcium phosphate functionalized collagen membrane, Colloids Surf. B 181 (2019) 671–679. [58] R. Naomi, P.M. Ridzuan, H. Bahari, Current insights into collagen type I, Polymers 13 (16) (2021) 2642. [59] S. Azadi, M. Esmkhani, S. Javanshir, New collagen-based cryogel as bio-sorbent materials for Rhodamine B removal from aqueous environments, J. Sol Gel Sci. Technol. 103 (2) (2022) 405–415. [60] M. Yu, Y.Y. Han, J. Li, L.J. Wang, Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor, Int. J. Biol. Macromol. 115 (2018) 185–193. [61] R.J.N. Tiozon, A.P. Bonto, N. Sreenivasulu, Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review, Int. J. Biol. Macromol. 192 (2021) 100–117. [62] J.F. Robyt, Starch: Structure, properties, chemistry, and enzymology. Fraser-Reid BO, Tatsuta K, Thiem J, Glycoscience. Berlin, Heidelberg: Springer, 2008: 1437-1472. [63] J. Shrivastava, A.K. Bajpai, Chapter 3 - Starch-based hydrogels, In: T.K. Giri, B. Ghosh (Eds.), Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, Woodhead Publishing 75–112 (2021). [64] A.M. Elgarahy, K.Z. Elwakeel, S.H. Mohammad, G.A. Elshoubaky, Multifunctional eco-friendly sorbent based on marine brown algae and bivalve shells for subsequent uptake of Congo red dye and copper(II) ions, J. Environ. Chem. Eng. 8 (4) (2020) 103915. [65] K.Z. Elwakeel, A.M. Elgarahy, E. Guibal, A biogenic tunable sorbent produced from upcycling of aquatic biota-based materials functionalized with methylene blue dye for the removal of chromium(VI) ions, J. Environ. Chem. Eng. 9 (2) (2021) 104767. [66] O. Kamal, C. Pochat-Bohatier, J. Sanchez-Marcano, Development and stability of gelatin cross-linked membranes for copper (II) ions removal from acid waters, Sep. Purif. Technol. 183 (2017) 153–161. [67] M.J. Dille, I.J. Haug, K.I. Draget, Chapter 34 – Gelatin and collagen, in: G.O. Phillips, P.A. Williams (Eds.), Handbook of Hydrocolloids, third ed., Woodhead Publishing, Cambridge, 2021. [68] H.A.M. Bacelo, S.C.R. Santos, C.M.S. Botelho, Tannin-based biosorbents for environmental applications – A review, Chem. Eng. J. 303 (2016) 575-587. [69] Y. Pei, X.J. Wu, G.Q. Xu, Z.J. Sun, X.J. Zheng, J. Liu, K.Y. Tang, Tannin-immobilized cellulose microspheres as effective adsorbents for removing cationic dye (Methylene Blue) from aqueous solution, J. Chem. Technol. Biotechnol. 92 (6) (2017) 1276–1284. [70] J. Sánchez-Martín, J. Beltrán-Heredia, A. Delgado-Regaña, M.A. Rodríguez-González, F. Rubio-Alonso, Adsorbent tannin foams: New and complementary applications in wastewater treatment, Chem. Eng. J. 228 (2013) 575–582. [71] M. Gurung, B.B. Adhikari, S. Alam, H. Kawakita, K. Ohto, K. Inoue, Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals, Chem. Eng. J. 228 (2013) 405–414. [72] A. Noreen, Z.I.H. Nazli, J. Akram, I. Rasul, A. Mansha, N. Yaqoob, R. Iqbal, S. Tabasum, M. Zuber, K.M. Zia, Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review, Int. J. Biol. Macromol. 101 (2017) 254–272. [73] M. Dohendou, K. Pakzad, Z. Nezafat, M. Nasrollahzadeh, M.G. Dekamin, Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review, Int. J. Biol. Macromol. 192 (2021) 771–819. [74] J. Patel, B. Maji, N.S.H.N. Moorthy, S. Maiti, Xanthan gum derivatives: Review of synthesis, properties and diverse applications, RSC Adv. 10 (45) (2020) 27103–27136. [75] W.Z. Zhang, F. Xu, Y.F. Wang, M. Luo, D.J. Wang, Facile control of zeolite NaA dispersion into xanthan gum-alginate binary biopolymer network in improving hybrid composites for adsorptive removal of Co2+ and Ni2+, Chem. Eng. J. 255 (2014) 316–326. [76] H.Y. Qiu, J.H. Yan, G.H. Lan, Y.Q. Liu, X.Q. Song, W.X. Peng, Y.Y. Cui, Removal of Cu2+ from wastewater by modified xanthan gum (XG) with ethylenediamine (EDA), RSC Adv. 6 (86) (2016) 83226–83233. [77] M.H. Abu Elella, E.S. Goda, M.A. Gab-Allah, S.E. Hong, B. Pandit, S. Lee, H. Gamal, A.U. Rehman, K.R. Yoon, Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review, J. Environ. Chem. Eng. 9 (1) (2021) 104702. [78] D.G. Njuguna, H. Schönherr, Xanthan gum hydrogels as high-capacity adsorbents for dye removal, ACS Appl. Polym. Mater. 3 (6) (2021) 3142–3152. [79] F. Hassanzadeh-Afruzi, G. Ranjbar, M.M. Salehi, F. Esmailzadeh, A. Maleki, Thiacalix[4]arene-functionalized magnetic xanthan gum (TC4As-XG@Fe3O4) as a hydrogel adsorbent for removal of dye and pesticide from water medium, Sep. Purif. Technol. 306 (2023) 122700. [80] Aluigi, Wool keratin nanofibres for copper(II) adsorption, J. Biobased Mater. Bioenergy 6 (2) (2012): 230–236. [81] M.R. Yarandpour, A. Rashidi, R. Khajavi, N. Eslahi, M.E. Yazdanshenas, Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions, J. Taiwan. Inst. Chem. Eng. 93 (2018) 566–581. [82] Y. Liu, L.S. Hu, B. Tan, J.R. Li, X.H. Gao, Y.N. He, X.F. Du, W. Zhang, W.L. Wang, Adsorption behavior of heavy metal ions from aqueous solution onto composite dextran-chitosan macromolecule resin adsorbent, Int. J. Biol. Macromol. 141 (2019) 738–746. [83] S.K. Swain, A.J. Pattanayak, A.P. Sahoo, Functional biopolymer composites. Thakur V, Thakur M, Functional Biopolymers. Cham: Springer, 2018: 159-182. [84] S.B. Park, E. Lih, K.S. Park, Y.K. Joung, D.K. Han, Biopolymer-based functional composites for medical applications, Prog. Polym. Sci. 68 (2017) 77–105. [85] L.K. Cardon, K.J. Ragaert, R. De Santis, A. Gloria, Design and fabrication methods for biocomposites. Biomedical Composites. Amsterdam: Elsevier, (2017) 17–36. [86] E. Chaabouni, F. Gassara, S.K. Brar, Biopolymers synthesis and application. Brar S, Dhillon G, Soccol C, Biotransformation of Waste Biomass into High Value Biochemicals. New York: Springer, 415–443 (2014). [87] L.Q. Wei, A. McDonald, A review on grafting of biofibers for biocomposites, Materials 9 (4) (2016) 303. [88] A. Rubio-López, A. Olmedo, A. Díaz-Álvarez, C. Santiuste, Manufacture of compression moulded PLA based biocomposites: A parametric study, Compos. Struct. 131 (2015) 995–1000. [89] S. Chaitanya, I. Singh, Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding, Mater. Manuf. Process. 32 (5) (2017) 468–474. [90] L.K. Bowlby, G.C. Saha, M.T. Afzal, Flexural strength behavior in pultruded GFRP composites reinforced with high specific-surface-area biochar particles synthesized via microwave pyrolysis, Compos. A 110 (2018) 190–196. [91] T. Garrido, A. Etxabide, P. Guerrero, K. de la Caba, Characterization of agar/soy protein biocomposite films: Effect of agar on the extruded pellets and compression moulded films, Carbohydr. Polym. 151 (2016) 408–416. [92] P. Valášek, M. Müller, Tensile characteristics of epoxy/jute biocomposites prepared by vacuum infusion. Machado J, Soares F, Veiga G, International Conference on Innovation, Engineering and Entrepreneurship. Cham: Springer, 574-580 (2019). [93] B. Sharma, P. Malik, P. Jain, Biopolymer reinforced nanocomposites: A comprehensive review, Mater. Today Commun. 16 (2018) 353–363. [94] N. Minsch, F.H. Herrmann, T. Gereke, A. Nocke, C. Cherif, Analysis of filament winding processes and potential equipment technologies, Procedia CIRP 66 (2017) 125–130. [95] B. Chieng, N. Ibrahim, Y. Then, Y. Loo, Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties, Molecules 19 (10) (2014) 16024–16038. [96] H.C. Obasi, A.A. Chaudhry, K. Ijaz, H. Akhtar, M.H. Malik, Development of biocomposites from coir fibre and poly (caprolactone) by solvent casting technique, Polym. Bull. 75 (5) (2018) 1775–1787. [97] L.L. Deng, X.F. Kang, Y.Y. Liu, F.Q. Feng, H. Zhang, Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting, Food Hydrocoll. 74 (2018) 324–332. [98] P. Ouagne, L. Bizet, C. Baley, J. Bréard, Analysis of the film-stacking processing parameters for PLLA/flax fiber biocomposites, J. Compos. Mater. 44 (10) (2010) 1201–1215. [99] B.T. Tomoda, P.H. Yassue-Cordeiro, J.V. Ernesto, P. Santos Lopes, L.O. Péres, C.F. da Silva, M.A. de Moraes, Characterization of biopolymer membranes and films: Physicochemical, mechanical, barrier, and biological properties. Biopolymer Membranes and Films. Amsterdam: Elsevier 67–95 (2020). [100] Y.W. Liu, J. Ren, Y. Pei, Z.M. Qi, M. Chen, S.J. Ling, Structural information of biopolymer nanofibrils by infrared nanospectroscopy, Polymer 219 (2021) 123534. [101] A. Rahdar, M. Almasi-Kashi, Dynamic light scattering of nano-gels of xanthan gum biopolymer in colloidal dispersion, J. Adv. Res. 7 (5) (2016) 635–641. [102] R. Busch, C. Tielemann, S. Reinsch, R. Müller, C. Patzig, M. Krause, T. Höche, Sample preparation for analytical scanning electron microscopy using initial Notch sectioning, Micron 150 (2021) 103090. [103] A.F. Tarchoun, D. Trache, T.M. Klapötke, A. Abdelaziz, M. Derradji, S. Bekhouche, Chemical design and characterization of cellulosic derivatives containing high-nitrogen functional groups: Towards the next generation of energetic biopolymers, Def. Technol. 18 (4) (2022) 537–546. [104] J.D. Hernández-Varela, J.J. Chanona-Pérez, P. Resendis-Hernández, L. Gonzalez Victoriano, J.V. Méndez-Méndez, S. Cárdenas-Pérez, H.A. Calderón Benavides, Development and characterization of biopolymers films mechanically reinforced with garlic skin waste for fabrication of compostable dishes, Food Hydrocoll. 124 (2022) 107252. [105] A.F. Tarchoun, D. Trache, T.M. Klapötke, B. Krumm, K. Khimeche, A. Mezroua, A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: Synthesis and characterization, Carbohydr. Polym. 249 (2020) 116820. [106] S. Ahmad Bhat, F. Sher, M. Hameed, O. Bashir, R. Kumar, D.V N. Vo, P. Ahmad, E.C. Lima, Sustainable nanotechnology based wastewater treatment strategies: Achievements, challenges and future perspectives, Chemosphere 288 (2022) 132606. [107] D.C.C. da Silva Medeiros, C. Nzediegwu, C. Benally, S.A. Messele, J.H. Kwak, M.A. Naeth, Y.S. Ok, S.X. Chang, M. Gamal El-Din, Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review, Sci. Total Environ. 809 (2022) 151120. [108] R. Connor, A. Renata, C. Ortigara, E. Koncagül, S. Uhlenbrook, B.M. Lamizana-Diallo, S.M. Zadeh, M. Qadir, M. Kjellén, J. Sjödin, Wastewater: the untapped resource, The United Nations World Water Development Report, 2017. [109] S. Khandaker, S. Das, M.T. Hossain, A. Islam, M.R. Miah, M.R. Awual, Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation - A comprehensive review, J. Mol. Liq. 344 (2021) 117795. [110] X.L. Qi, X.Q. Tong, W.H. Pan, Q.K. Zeng, S.Y. You, J.L. Shen, Recent advances in polysaccharide-based adsorbents for wastewater treatment, J. Clean. Prod. 315 (2021) 128221. [111] M. Khodakarami, M. Bagheri, Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment, J. Clean. Prod. 296 (2021) 126404. [112] R. Meinzen-Dick, M. Bakker, Water rights and multiple water uses – Framework and application to Kirindi Oya irrigation system Sri Lanka, Irrig. Drain. Syst. 15(2) (2001) 129–148. [113] N.H. Solangi, J. Kumar, S. Ali Mazari, S. Ahmed, N. Fatima, N.M. Mubarak, Development of fruit waste derived bio-adsorbents for wastewater treatment: A review, J. Hazard. Mater. 416 (2021) 125848. [114] D.J. Son, W.Y. Kim, B.R. Jung, D. Chang, K.H. Hong, Pilot-scale anoxic/aerobic biofilter system combined with chemical precipitation for tertiary treatment of wastewater, J. Water Process. Eng. 35 (2020) 101224. [115] S. Gujar, P. Gogate, P.M. Kanthale, R. Pandey, S. Thakre, M. Agrawal, Combined oxidation processes based on ultrasound, hydrodynamic cavitation and chemical oxidants for treatment of real industrial wastewater from cellulosic fiber manufacturing sector, Sep. Purif. Technol. 257 (2021) 117888. [116] C.G. Joseph, Y.Y. Farm, Y.H. Taufiq-Yap, C.K. Pang, J.L.H. Nga, G. Li Puma, Ozonation treatment processes for the remediation of detergent wastewater: A comprehensive review, J. Environ. Chem. Eng. 9 (5) (2021) 106099. [117] W.S. Chai, J.Y. Cheun, P.S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.H. Ho, P.L. Show, A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application, J. Clean. Prod. 296 (2021) 126589. [118] Y.A.R. Lebron, V.R. Moreira, M.C.S. Amaral, Metallic ions recovery from membrane separation processes concentrate: A special look onto ion exchange resins, Chem. Eng. J. 425 (2021) 131812. [119] A.I. Adetunji, A.O. Olaniran, Treatment of industrial oily wastewater by advanced technologies: A review, Appl. Water Sci. 11 (6) (2021) 98. [120] M. Siwek, T. Edgecock, Application of electron beam water radiolysis for sewage sludge treatment—a review, Environ. Sci. Pollut. Res. 27 (34) (2020) 42424–42448. [121] A.A. Owodunni, S. Ismail, Revolutionary technique for sustainable plant-based green coagulants in industrial wastewater treatment—a review, J. Water Process. Eng. 42 (2021) 102096. [122] C.Y. Zhong, G. Cao, K. Rong, Z.W. Xia, T. Peng, H.G. Chen, J.G. Zhou, Characterization of a microbial polysaccharide-based bioflocculant and its anti-inflammatory and pro-coagulant activity, Colloids Surf. B 161 (2018) 636–644. [123] R.S. Kurusu, M. Lapointe, N. Tufenkji, Sustainable iron-grafted cellulose fibers enable coagulant recycling and improve contaminant removal in water treatment, Chem. Eng. J. 430 (2022) 132927. [124] I. Righetto, R.A. Al-Juboori, J.U. Kaljunen, A. Mikola, Wastewater treatment with starch-based coagulants for nutrient recovery purposes: Testing on lab and pilot scales, J. Environ. Manag. 284 (2021) 112021. [125] V.H. Dao, N.R. Cameron, K. Saito, Synthesis, properties and performance of organic polymers employed in flocculation applications, Polym. Chem. 7 (1) (2016) 11–25. [126] H. Salehizadeh, N. Yan, R. Farnood, Recent advances in polysaccharide bio-based flocculants, Biotechnol. Adv. 36 (1) (2018) 92–119. [127] X.C. Jiang, Y.S. Li, X.H. Tang, J.Y. Jiang, Q. He, Z.K. Xiong, H.L. Zheng, Biopolymer-based flocculants: A review of recent technologies, Environ. Sci. Pollut. Res. 28 (34) (2021) 46934–46963. [128] X.Q. Chen, C.L. Si, P. Fatehi, Cationic xylan- (2-methacryloyloxyethyl trimethyl ammonium chloride) polymer as a flocculant for pulping wastewater, Carbohydr. Polym. 186 (2018) 358–366. [129] Y.J. Sun, S.B. Zhou, W.Q. Sun, S.C. Zhu, H.L. Zheng, Flocculation activity and evaluation of chitosan-based flocculant CMCTS-g-P(AM-CA) for heavy metal removal, Sep. Purif. Technol. 241 (2020) 116737. [130] S. Bhalkaran, L. Wilson, Investigation of self-assembly processes for chitosan-based coagulant-flocculant systems: A mini-review, Int. J. Mol. Sci. 17 (10) (2016) 1662. [131] X.M. Tang, X.E. Jiang, S.X. Zhang, H.L. Zheng, X.M. Tan, Recent progress on graft polymerization of natural polymer flocculants: Synthesis method, mechanism and characteristic, Mini Rev. Org. Chem. 15 (3) (2018) 227–235. [132] S.J. Wang, F.G. Kong, P. Fatehi, Q.X. Hou, Cationic high molecular weight lignin polymer: A flocculant for the removal of anionic azo-dyes from simulated wastewater, Molecules 23 (8) (2018) 2005. [133] T. Lü, C.L. Luo, D.M. Qi, D. Zhang, H.T. Zhao, Efficient treatment of emulsified oily wastewater by using amphipathic chitosan-based flocculant, React. Funct. Polym. 139 (2019) 133–141. [134] C.H. Shi, W.Q. Sun, Y.J. Sun, L. Chen, Y.H. Xu, M.D. Tang, Synthesis, characterization, and sludge dewaterability evaluation of the chitosan-based flocculant CCPAD, Polymers 11 (1) (2019) 95. [135] H.W. Du, Z. Yang, Z.Q. Tian, M.L. Huang, W.B. Yang, L.M. Zhang, A.M. Li, Enhanced removal of trace antibiotics from turbid water in the coexistence of natural organic matters using phenylalanine-modified-chitosan flocculants: Effect of flocculants’ molecular architectures, Chem. Eng. J. 333 (2018) 310–319. [136] M. Li, Y.L. Wang, X.B. Hou, X. Wan, H.N. Xiao, DMC-grafted cellulose as green-based flocculants for agglomerating fine Kaolin particles, Green Energy Environ. 3 (2) (2018) 138–146. [137] Y.J. Sun, C.Y. Zhu, W.Q. Sun, Y.H. Xu, X.F. Xiao, H.L. Zheng, H.F. Wu, C.Y. Liu, Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water, Carbohydr. Polym. 164 (2017) 222–232. [138] K. Yang, G. Wang, X.M. Chen, X. Wang, F.L. Liu, Treatment of wastewater containing Cu2+ using a novel macromolecular heavy metal chelating flocculant xanthated chitosan, Colloids Surf. A 558 (2018) 384–391. [139] T. Lü, S. Zhang, D.M. Qi, D. Zhang, H.T. Zhao, Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant, J. Colloid Interface Sci. 518 (2018) 76–83. [140] W.J. Zhang, H.D. Wang, L.Q. Li, D.D. Li, Q.D. Wang, Q.Y. Xu, D.S. Wang, Impact of molecular structure and charge property of chitosan based polymers on flocculation conditioning of advanced anaerobically digested sludge for dewaterability improvement, Sci. Total Environ. 670 (2019) 98–109. [141] Y.J. Sun, A.W. Chen, S.Y. Pan, W.Q. Sun, C.Y. Zhu, K.J. Shah, H.L. Zheng, Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation, J. Environ. Manag. 248 (2019) 109241. [142] L. Chen, Y.J. Sun, W.Q. Sun, K.J. Shah, Y.H. Xu, H.L. Zheng, Efficient cationic flocculant MHCS-g-P(AM-DAC) synthesized by UV-induced polymerization for algae removal, Sep. Purif. Technol. 210 (2019) 10–19. [143] L. Chen, C.Y. Liu, Y.J. Sun, W.Q. Sun, Y.H. Xu, H.L. Zheng, Synthesis and characterization of ampholytic flocculant CPCTS-g-P (CTA-DMDAAC) and its flocculation properties for microcystis aeruginosa removal, Processes 6 (5) (2018) 54. [144] T.Y. Hou, H.W. Du, Z. Yang, Z.Q. Tian, S.C. Shen, Y.X. Shi, W.B. Yang, L.M. Zhang, Flocculation of different types of combined contaminants of antibiotics and heavy metals by thermo-responsive flocculants with various architectures, Sep. Purif. Technol. 223 (2019) 123–132. [145] Z. Yang, T.Y. Hou, J.Y. Ma, B. Yuan, Z.Q. Tian, W.B. Yang, N.J.D. Graham, Role of moderately hydrophobic chitosan flocculants in the removal of trace antibiotics from water and membrane fouling control, Water Res. 177 (2020) 115775. [146] M. Hu, L.N. Zhao, N.B. Yu, Z.Q. Tian, Z.L. Yin, Z. Yang, W.B. Yang, N.J.D. Graham, Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation, J. Membr. Sci. 635 (2021) 119540. [147] Z.Z. Wang, Y.Y. Li, M. Hu, T. Lei, Z.Q. Tian, W.B. Yang, Z. Yang, N.J.D. Graham, Influence of DOM characteristics on the flocculation removal of trace pharmaceuticals in surface water by the successive dosing of alum and moderately hydrophobic chitosan, Water Res. 213 (2022) 118163. [148] Y.D. Wang, T.Y. Hou, Z. Yang, L.N. Zhao, W. Wu, W.B. Yang, N.J.D. Graham, Nitrogen-free cationic starch flocculants: Flocculation performance, antibacterial ability, and UF membrane fouling control, ACS Appl. Bio Mater. 3 (5) (2020) 2910–2919. [149] L. Zhao, M. Hu, H. Muslim, T. Hou, B. Bian, Z. Yang, W. Yang, L. Zhang, Co-utilization of lake sediment and blue-green algae for porous lightweight aggregate (ceramsite) production, Chemosphere 287 (2022) 132145. [150] A. Leudjo Taka, M.J. Klink, X. Yangkou Mbianda, E.B. Naidoo, Chitosan nanocomposites for water treatment by fixed-bed continuous flow column adsorption: A review, Carbohydr. Polym. 255 (2021) 117398. [151] M.J. Ahmed, B.H. Hameed, Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review, Ecotoxicol. Environ. Saf. 149 (2018) 257–266. [152] S.L. Flores López, M.R. Moreno Virgen, V. Hernández Montoya, M.A. Montes Morán, R. Tovar Gómez, N.A. Rangel Vázquez, M.A. Pérez Cruz, M.S. Esparza González, Effect of an external magnetic field applied in batch adsorption systems: Removal of dyes and heavy metals in binary solutions, J. Mol. Liq. 269 (2018) 450–460. [153] A. Thirunavukkarasu, R. Nithya, R. Sivashankar, Continuous fixed-bed biosorption process: A review, Chem. Eng. J. Adv. 8 (2021) 100188. [154] H. Patel, Comparison of batch and fixed bed column adsorption: A critical review, Int. J. Environ. Sci. Technol. 19 (10) (2022) 10409–10426. [155] B.O. Isiuku, P.C. Okonkwo, C.D. Emeagwara, Batch adsorption isotherm models applied in single and multicomponent adsorption systems–a review, J. Dispers. Sci. Technol. 42 (12) (2021) 1879–1897. [156] V. Russo, M. Trifuoggi, M. Di Serio, R. Tesser, Fluid-solid adsorption in batch and continuous processing: A review and insights into modeling, Chem. Eng. Technol. 40 (5) (2017) 799–820. [157] S. Archana, B.K. Jayanna, A. Ananda, M.S. Ananth, A. Mossad Ali, H.B. Muralidhara, K.Y. Kumar, Numerical investigations of response surface methodology for organic dye adsorption onto Mg-Al LDH-GO Nano Hybrid: An optimization, kinetics and isothermal studies, J. Indian Chem. Soc. 99 (1) (2022) 100249. [158] P. Gharbani, A. Mehrizad, Preparation and characterization of graphitic carbon nitrides/polyvinylidene fluoride adsorptive membrane modified with chitosan for Rhodamine B dye removal from water: Adsorption isotherms, kinetics and thermodynamics, Carbohydr. Polym. 277 (2022) 118860. [159] E.C. Nnadozie, P.A. Ajibade, Isotherm, kinetics, thermodynamics studies and effects of carbonization temperature on adsorption of Indigo Carmine (IC) dye using C. odorata biochar, Chem. Data Collect. 33 (2021) 100673. [160] A. Thirunavukkarasu, K. Muthukumaran, R. Nithya, Adsorption of acid yellow 36 onto green nanoceria and amine functionalized green nanoceria: Comparative studies on kinetics, isotherm, thermodynamics, and diffusion analysis, J. Taiwan. Inst. Chem. Eng. 93 (2018) 211–225. [161] A. Thirunavukkarasu, R. Nithya, R. Sivashankar, A review on the role of nanomaterials in the removal of organic pollutants from wastewater, Rev. Environ. Sci. Bio/Technol. 19 (4) (2020) 751–778. [162] N. Blagojev, D. Kukić, V. Vasić, M. Šćiban, J. Prodanović, O. Bera, A new approach for modelling and optimization of Cu(II) biosorption from aqueous solutions using sugar beet shreds in a fixed-bed column, J. Hazard. Mater. 363 (2019) 366–375. [163] H.A. Alalwan, M.N. Abbas, Z.N. Abudi, A.H. Alminshid, Adsorption of thallium ion (Tl+3) from aqueous solutions by rice husk in a fixed-bed column: Experiment and prediction of breakthrough curves, Environ. Technol. Innov. 12 (2018) 1–13. [164] S. Chatterjee, S. Mondal, S. De, Design and scaling up of fixed bed adsorption columns for lead removal by treated laterite, J. Clean. Prod. 177 (2018) 760–774. [165] B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V.K. Gupta, S. Harikaranahalli Puttaiah, N. Marzban, Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems, Chem. Eng. J. 346 (2018) 258–270. [166] E. Aytunga Arık Kibar, Adsorptive recovery of phenolics from apple juice via batch and fixed bed column, J. Food Eng. 239 (2018) 114–121. [167] M. Riazi, A.R. Keshtkar, M. Ali Moosavian, Biosorption of Th(IV) in a fixed-bed column by Ca-pretreated Cystoseira indica, J. Environ. Chem. Eng. 4 (2) (2016) 1890–1898. [168] M.A. Tony, An industrial ecology approach: Green cellulose-based bio-adsorbent from sugar industry residue for treating textile industry wastewater effluent, Int. J. Environ. Anal. Chem. 101 (2) (2021) 167–183. [169] R.K. Ramakrishnan, V.V.T. Padil, S. Wacławek, M. Černík, R.S. Varma, Eco-friendly and economic, adsorptive removal of cationic and anionic dyes by bio-based karaya gum—chitosan sponge, Polymers 13 (2) (2021) 251. [170] H. Wang, Z. Li, S. Yahyaoui, H. Hanafy, M.K. Seliem, A. Bonilla-Petriciolet, G. Luiz Dotto, L. Sellaoui, Q. Li, Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modelling, Chem. Eng. J. 417 (2021) 128116. [171] X.L. Xu, J.J. Yu, C. Liu, G. Yang, L. Shi, X.P. Zhuang, Xanthated chitosan/cellulose sponges for the efficient removal of anionic and cationic dyes, React. Funct. Polym. 160 (2021) 104840. [172] Y. Song, Q. Wang, W.J. Yang, Q.L. Chen, Y.F. Zhou, L.M. Zhou, Chitosan-nickel oxide composite as an efficient adsorbent for removal of Congo red from aqueous solution, J. Dispers. Sci. Technol. 43 (11) (2022) 1689–1699. [173] D. Gautam, L. Saya, S. Hooda, Fe3O4 loaded chitin - A promising nano adsorbent for Reactive Blue 13 dye, Environ. Adv. 2 (2020) 100014. [174] N. Harada, J.I. Nakamura, H. Uyama, Single-step fabrication and environmental applications of activated carbon-containing porous cellulose beads, React. Funct. Polym. 160 (2021) 104830. [175] S.K. Lakkaboyana, K. Soontarapa, R.K. Marella, K. Kannan, Preparation of novel chitosan polymeric nanocomposite as an efficient material for the removal of Acid Blue 25 from aqueous environment, Int. J. Biol. Macromol. 168 (2021) 760–768. [176] Y. Wan, Z.Y. Liu, P. Song, X.Q. Zhang, J.C. Song, Y.J. Fu, X.H. Yao, J. Wang, T. Chen, D.Y. Zhang, L. Li, C.Y. Shi, Ionic liquid groups modified 3D porous cellulose microspheres for selective adsorption of AO7 dye, J. Clean. Prod. 240 (2019) 118201. [177] P.M. Morais da Silva, N.G. Camparotto, T. de Figueiredo Neves, K.T. Grego Lira, V.R. Mastelaro, C. Siqueira Franco Picone, P. Prediger, Effective removal of basic dye onto sustainable chitosan beads: Batch and fixed-bed column adsorption, beads stability and mechanism, Sustain. Chem. Pharm. 18 (2020) 100348. [178] Y.A. Li, H.N. Xiao, Y.F. Pan, L.D. Wang, Novel composite adsorbent consisting of dissolved cellulose fiber/microfibrillated cellulose for dye removal from aqueous solution, ACS Sustainable Chem. Eng. 6 (5) (2018) 6994–7002. [179] L.N. Liang, S.Y. Zhang, G.A. Goenaga, X.Z. Meng, T.A. Zawodzinski, A.J. Ragauskas, Chemically cross-linked cellulose nanocrystal aerogels for effective removal of cation dye, Front. Chem. 8 (2020) 570. [180] F. Jiang, D.M. Dinh, Y.L. Hsieh, Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels, Carbohydr. Polym. 173 (2017) 286–294. [181] H.Y. Wang, Y.T. Gong, Y. Wang, Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment, RSC Adv. 4 (86) (2014) 45753–45759. [182] M.A. Khapre, S. Pandey, R.M. Jugade, Glutaraldehyde-cross-linked chitosan-alginate composite for organic dyes removal from aqueous solutions, Int. J. Biol. Macromol. 190 (2021) 862–875. [183] G. Sharma, B. Thakur, A. Kumar, S. Sharma, M. Naushad, F.J. Stadler, Atrazine removal using chitin-cl-poly(acrylamide-co-itaconic acid) nanohydrogel: Isotherms and pH responsive nature, Carbohydr. Polym. 241 (2020) 116258. [184] C. Lei, Y. Song, F.X. Meng, Y.Q. Sun, D.C.W. Tsang, K. Yang, D.H. Lin, Iron-crosslinked alginate derived Fe/C composites for atrazine removal from water, Sci. Total Environ. 756 (2021) 143866. [185] P.G. Moradeeya, M.A. Kumar, R.B. Thorat, M. Rathod, Y. Khambhaty, S. Basha, Nanocellulose for biosorption of chlorpyrifos from water: Chemometric optimization, kinetics and equilibrium, Cellulose 24 (3) (2017) 1319–1332. [186] N. Narayanan, S. Gupta, V.T. Gajbhiye, K.M. Manjaiah, Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis, Chemosphere 173 (2017) 502–511. [187] S. Salazar, D. Guerra, N. Yutronic, P. Jara, Removal of aromatic chlorinated pesticides from aqueous solution using β-cyclodextrin polymers decorated with Fe3O4 nanoparticles, Polymers 10 (9) (2018) 1038. [188] H. El Harmoudi, L. El Gaini, E. Daoudi, M. Rhazi, Y. Boughaleb, M.A. El Mhammedi, A. Migalska-Zalas, M. Bakasse, Removal of 2, 4-D from aqueous solutions by adsorption processes using two biopolymers: Chitin and chitosan and their optical properties, Opt. Mater. 36 (9) (2014) 1471–1477. [189] M. Etcheverry, V. Cappa, J. Trelles, G. Zanini, Montmorillonite-alginate beads: Natural mineral and biopolymers based sorbent of paraquat herbicides, J. Environ. Chem. Eng. 5 (6) (2017) 5868–5875. [190] R.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A. de Moraes, C.M.G. da Silva, M.M. Beppu, L.F. Fraceto, Removal of glyphosate herbicide from water using biopolymer membranes, J. Environ. Manag. 151 (2015) 353–360. [191] C. Dwivedi, A. Gupta, A. Chaudhary, C.K. Nandi, Gold nanoparticle chitosan composite hydrogel beads show efficient removal of methyl parathion from waste water, RSC Adv. 4 (75) (2014) 39830–39838. [192] M. de Carvalho Eufrásio Pinto, R.G.L. Gonçalves, R.M.M. dos Santos, E.A. Araújo, G.F. Perotti, R. dos Santos Macedo, M.A. Bizeto, V.R.L. Constantino, F.G. Pinto, J. Tronto, Mesoporous carbon derived from a biopolymer and a clay: Preparation, characterization and application for an organochlorine pesticide adsorption, Microporous Mesoporous Mater. 225 (2016) 342–354. [193] F.Y. Suo, G.X. Xie, J. Zhang, J.Y. Li, C.S. Li, X. Liu, Y.P. Zhang, Y.Q. Ma, M.S. Ji, A carbonised sieve-like corn straw cellulose-graphene oxide composite for organophosphorus pesticide removal, RSC Adv. 8 (14) (2018) 7735–7743. [194] S. Nikzad, A.A. Amooey, A. Alinejad-Mir, Adsorption of diazinon from aqueous solutions by magnetic guar gum-montmorillonite, Chem. Data Collect. 20 (2019) 100187. [195] A. Shankar, M. Kongot, V.K. Saini, A. Kumar, Removal of pentachlorophenol pesticide from aqueous solutions using modified chitosan, Arab. J. Chem. 13 (1) (2020) 1821–1830. [196] T.G. Kebede, S. Dube, M.M. Nindi, Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems, J. Environ. Chem. Eng. 7 (5) (2019) 103330. [197] O. Yaqubi, M.H. Tai, D. Mitra, C. Gerente, K.G. Neoh, C.H. Wang, Y. Andres, Adsorptive removal of tetracycline and amoxicillin from aqueous solution by leached carbon black waste and chitosan-carbon composite beads, J. Environ. Chem. Eng. 9 (1) (2021) 104988. [198] V. Arya, L. Philip, Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite, Microporous Mesoporous Mater. 232 (2016) 273–280. [199] K. Mphahlele, M.S. Onyango, S.D. Mhlanga, Adsorption of aspirin and paracetamol from aqueous solution using Fe/N-CNT/β-cyclodextrin nanocomopsites synthesized via a benign microwave assisted method, J. Environ. Chem. Eng. 3 (4) (2015) 2619–2630. [200] Y.T. Wang, L.Y. He, G.Y. Dang, H. Li, X.L. Li, Polypyrrole-functionalized magnetic Bi2MoO6 nanocomposites as a fast, efficient and reusable adsorbent for removal of ketoprofen and indomethacin from aqueous solution, J. Colloid Interface Sci. 592 (2021) 51–65. [201] X. Zhou, C. Dong, Z. Yang, Z.Q. Tian, L.S. Lu, W.B. Yang, Y.P. Wang, L.M. Zhang, A.M. Li, J.Q. Chen, Enhanced adsorption of pharmaceuticals onto core-brush shaped aromatic rings-functionalized chitosan magnetic composite particles: Effects of structural characteristics of both pharmaceuticals and brushes, J. Clean. Prod. 172 (2018) 1025–1034. [202] M.S. Shamsudin, S.F. Azha, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, S. Ismail, Performance and interactions of diclofenac adsorption using Alginate/Carbon-based Films: Experimental investigation and statistical physics modelling, Chem. Eng. J. 428 (2022) 131929. [203] Y. Kong, Y.A. Zhuang, K. Han, B.Y. Shi, Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel, Colloids Surf. A 588 (2020) 124360. [204] R.A. Solano, L.D. De León, G. De Ávila, A.P. Herrera, Polycyclic aromatic hydrocarbons (PAHs) adsorption from aqueous solution using chitosan beads modified with thiourea, TiO2 and Fe3O4, Environ. Technol. Innov. 21 (2021) 101378. [205] C.M.C. Filho, P.V.A. Bueno, A.F.Y. Matsushita, A.F. Rubira, E.C. Muniz, L. Durães, D.M.B. Murtinho, A.J.M. Valente, Synthesis, characterization and sorption studies of aromatic compounds by hydrogels of chitosan blended with β-cyclodextrin- and PVA-functionalized pectin, RSC Adv. 8 (26) (2018) 14609–14622. [206] A. Rebekah, G. Bharath, M. Naushad, C. Viswanathan, N. Ponpandian, Magnetic graphene/chitosan nanocomposite: A promising nano-adsorbent for the removal of 2-naphthol from aqueous solution and their kinetic studies, Int. J. Biol. Macromol. 159 (2020) 530–538. [207] W.J. Dai, P. Wu, D. Liu, J. Hu, Y. Cao, T.Z. Liu, C.P. Okoli, B. Wang, L. Li, Adsorption of Polycyclic Aromatic Hydrocarbons from aqueous solution by Organic Montmorillonite Sodium Alginate Nanocomposites, Chemosphere 251 (2020) 126074. [208] N. Rattanakunsong, O. Bunkoed, A porous composite monolith sorbent of polyaniline, multiwall carbon nanotubes and chitosan cryogel for aromatic compounds extraction, Microchem. J. 154 (2020) 104562. [209] A. Balati, A. Shahbazi, M.M. Amini, S.H. Hashemi, Adsorption of polycyclic aromatic hydrocarbons from wastewater by using silica-based organic–inorganic nanohybrid material, J. Water Reuse Desalin. 5 (1) (2015) 50–63. [210] Y. Liu, L.Z. Qiao, A.J. Wang, Y.L. Li, L.S. Zhao, K.F. Du, Tentacle-type poly(hydroxamic acid)-modified macroporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption, J. Chromatogr. A 1645 (2021) 462098. [211] R.F. Wang, L.G. Deng, X.J. Fan, K. Li, H.Q. Lu, W. Li, Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose-magnesium hydroxide, Int. J. Biol. Macromol. 189 (2021) 607–617. [212] I. Ayouch, I. Kassem, Z. Kassab, I. Barrak, A. Barhoun, J. Jacquemin, K. Draoui, M. El Achaby, Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions, Surf. Interfaces 24 (2021) 101124. [213] C. Gao, X.L. Wang, Q.D. An, Z.Y. Xiao, S.R. Zhai, Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions, Carbohydr. Polym. 256 (2021) 117564. [214] T. Kekes, G. Kolliopoulos, C. Tzia, Hexavalent chromium adsorption onto crosslinked chitosan and chitosan/β-cyclodextrin beads: Novel materials for water decontamination, J. Environ. Chem. Eng. 9 (4) (2021) 105581. [215] R. Bhatt, P. Padmaj, A chitosan-thiomer polymer for highly efficacious adsorption of mercury, Carbohydr. Polym. 207 (2019) 663–674. [216] S.J. Mousavi, M. Parvini, M. Ghorbani, Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method, Carbohydr. Polym. 188 (2018) 197–212. [217] F.H. Dong, X. Xu, H. Shaghaleh, J.W. Guo, L.Z. Guo, Y.H. Qian, H. Liu, S.F. Wang, Factors influencing the morphology and adsorption performance of cellulose nanocrystal/iron oxide nanorod composites for the removal of arsenic during water treatment, Int. J. Biol. Macromol. 156 (2020) 1418–1424. [218] H. Zhao, X.K. Ouyang, L.Y. Yang, Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber-sodium alginate hydrogel beads, J. Mol. Liq. 324 (2021) 115122. [219] Y.H. Teow, L.M. Kam, A.W. Mohammad, Synthesis of cellulose hydrogel for copper (II) ions adsorption, J. Environ. Chem. Eng. 6 (4) (2018) 4588–4597. [220] Q. Chen, J.W. Zheng, L.Y. Wen, C. Yang, L.J. Zhang, A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism, Chemosphere 224 (2019) 509–518. [221] S.T. Zhuang, J.L. Wang, Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent, J. Mol. Liq. 294 (2019) 111682. [222] H.G. El-Shorbagy, S.M. El-Kousy, K.Z. Elwakeel, M.A. Abd El-Ghaffar, Eco-friendly chitosan condensation adduct resins for removal of toxic silver ions from aqueous medium, J. Ind. Eng. Chem. 100 (2021) 410–421. [223] N. Goyal, P. Gao, Z. Wang, S.W. Cheng, Y.S. Ok, G. Li, L.Y. Liu, Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium, J. Hazard. Mater. 392 (2020) 122494. [224] D. Humelnicu, M.V. Dinu, E.S. Drăgan, Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents, J. Hazard. Mater. 185 (1) (2011) 447–455. [225] L.R. Yang, C.Q. Huang, X.A. Luo, L. Zhang, Y.J. Ye, H. Jun, Y. Wang, Chitosan-based aerogel with anti-swelling for U(VI) adsorption from aqueous solution, Colloids Surf. A 630 (2021) 127527. [226] K.X. Wang, H. Ma, S.Y. Pu, C. Yan, M.T. Wang, J. Yu, X.K. Wang, W. Chu, A. Zinchenko, Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water, J. Hazard. Mater. 362 (2019) 160–169. [227] S. Eun, J. Ryu, H. Kim, H.J. Hong, S. Kim, Simultaneous removal of radioactive cesium and strontium from seawater using a highly efficient Prussian blue-embedded alginate aerogel, J. Environ. Manag. 297 (2021) 113389. [228] J. Phanthuwongpakdee, S. Babel, T. Kaneko, Screening of New bio-based materials for radioactive iodide adsorption from water environment, J. Water Process. Eng. 40 (2021) 101955. [229] Q. Li, Q. Mao, M. Li, S.J. Zhang, G.H. He, W.J. Zhang, Cross-linked chitosan microspheres entrapping silver chloride via the improved emulsion technology for iodide ion adsorption, Carbohydr. Polym. 234 (2020) 115926. [230] F. Zahakifar, A.R. Keshtkar, M. Talebi, Synthesis of sodium alginate (SA)/polyvinyl alcohol (PVA)/polyethylene oxide (PEO)/ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions, Prog. Nucl. Energy 134 (2021) 103642. [231] W.H. Luo, Q.D. Huang, P. Antwi, B.L. Guo, K. Sasaki, Synergistic effect of ClO4- and Sr2+ adsorption on alginate-encapsulated organo-montmorillonite beads: Implication for radionuclide immobilization, J. Colloid Interface Sci. 560 (2020) 338–348. [232] L. Lv, Y.H. Xie, G.M. Liu, G. Liu, J. Yu, Removal of perchlorate from aqueous solution by cross-linked Fe(III)-chitosan complex, J. Environ. Sci. 26 (4) (2014) 792–800. [233] Y.H. Xie, S.Y. Li, F. Wang, G.L. Liu, Removal of perchlorate from aqueous solution using protonated cross-linked chitosan, Chem. Eng. J. 156 (1) (2010) 56–63. [234] J. Shen, F. Cao, S.Q. Liu, C.J. Wang, R.G. Chen, K. Chen, Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite, Front. Chem. Sci. Eng. 16 (3) (2022) 408–419. [235] S. Iftekhar, V. Srivastava, M. Sillanpää, Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite, Chem. Eng. J. 320 (2017) 151–159. [236] M. Wang, X. Li, W.K. Hua, L. Deng, P.Y. Li, T.H. Zhang, X.F. Wang, Superelastic three-dimensional nanofiber-reconfigured spongy hydrogels with superior adsorption of lanthanide ions and photoluminescence, Chem. Eng. J. 348 (2018) 95–108. [237] M. Mohamed, S. Ouki, Removal mechanisms of toluene from aqueous solutions by chitin and chitosan, Ind. Eng. Chem. Res. 50 (16) (2011) 9557–9563. [238] G.Z. Sun, X.G. Chen, J. Zhang, C. Feng, X.J. Cheng, Adsorption characteristics of residual oil on amphiphilic chitosan derivative, Water Sci. Technol. 61 (9) (2010) 2363–2374. [239] T.L. Zhai, Q.F. Zheng, Z.Y. Cai, H.S. Xia, S.Q. Gong, Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents, Carbohydr. Polym. 148 (2016) 300–308. [240] B. Doshi, E. Repo, J.P. Heiskanen, J.A. Sirviö, M. Sillanpää, Effectiveness of N, O-carboxymethyl chitosan on destabilization of Marine Diesel, Diesel and Marine-2T oil for oil spill treatment, Carbohydr. Polym. 167 (2017) 326–336. [241] I.C. da Silva Grem, B.N.B. Lima, W.F. Carneiro, Y.G. de Carvalho Queirós, C.R.E. Mansur, Chitosan microspheres applied for removal of oil from produced water in the oil industry, Polímeros Ciência E Tecnologia 23 (6) (2013) 705–711. [242] S.F. Soares, M.I. Rodrigues, T. Trindade, A.L. Daniel-da-Silva, Chitosan-silica hybrid nanosorbents for oil removal from water, Colloids Surf. A 532 (2017) 305–313. [243] R.R. Fouad, H.A. Aljohani, K.R. Shoueir, Biocompatible poly(vinyl alcohol) nanoparticle-based binary blends for oil spill control, Mar. Pollut. Bull. 112 (1–2) (2016) 46–52. [244] J. Ojala, J.A. Sirviö, H. Liimatainen, Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil-water emulsion stabilizers, Chem. Eng. J. 288 (2016) 312–320. [245] M.S. Mohy Eldin, Y.A. Ammar, T.M. Tamer, A.M. Omer, A.A. Ali, Development of oleophilic adsorbent based on chitosan- poly (butyl acrylate) graft copolymer for petroleum oil spill removal, Int. J. Adv. Res. 4 (11) (2016) 2095–2111. [246] A.Q. Wang, Z.K. Zheng, R.Q. Li, D. Hu, Y.R. Lu, H.X. Luo, K. Yan, Biomass-derived porous carbon highly efficient for removal of Pb(II) and Cd(II), Green Energy Environ. 4 (4) (2019) 414–423. [247] M.F. Hamza, H. Mira, Y.Z. Wei, S.M. Aboelenin, E. Guibal, W.M. Salem, Sulfonation of chitosan for enhanced sorption of Li(I) from acidic solutions - Application to metal recovery from waste Li-ion mobile battery, Chem. Eng. J. 441 (2022) 135941. [248] G.V. Brião, S.L. Jahn, E.L. Foletto, G.L. Dotto, Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption, Colloids Surf. A 556 (2018) 43–50. [249] W. Song, X. Xu, X. Tan, Y. Wang, J.Y. Ling, B.Y. Gao, Q.Y. Yue, Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties, Carbohydr. Polym. 115 (2015) 432–438. [250] J.W. Pan, B.Y. Gao, W. Song, X. Xu, B. Jin, Q.Y. Yue, Column adsorption and regeneration study of magnetic biopolymer resin for perchlorate removal in presence of nitrate and phosphate, J. Clean. Prod. 213 (2019) 762–775. [251] N. Pandey, S.K. Shukla, N.B. Singh, Water purification by polymer nanocomposites: An overview, Nanocomposites 3 (2) (2017) 47–66. [252] S.F. Anis, R. Hashaikeh, N. Hilal, Microfiltration membrane processes: A review of research trends over the past decade, J. Water Process. Eng. 32 (2019) 100941. [253] Y.H. Wen, J.M. Yuan, X.M. Ma, S.R. Wang, Y.C. Liu, Polymeric nanocomposite membranes for water treatment: A review, Environ. Chem. Lett. 17 (4) (2019) 1539–1551. [254] S. Mansoori, R. Davarnejad, T. Matsuura, A.F. Ismail, Membranes based on non-synthetic (natural) polymers for wastewater treatment, Polym. Test. 84 (2020) 106381. [255] P.S. Goh, A.F. Ismail, A review on inorganic membranes for desalination and wastewater treatment, Desalination 434 (2018) 60–80. [256] A.N. Lee, J.W. Elam, S.B. Darling, Membrane materials for water purification: Design, development, and application, Environ. Sci.: Water Res. Technol. 2 (1) (2016) 17–42. [257] J. Lee, S. Jeong, Z.W. Liu, Progress and challenges of carbon nanotube membrane in water treatment, Crit. Rev. Environ. Sci. Technol. 46 (11–12) (2016) 999–1046. [258] P.S. Goh, K.C. Wong, A.F. Ismail, Membrane technology: A versatile tool for saline wastewater treatment and resource recovery, Desalination 521 (2022) 115377. [259] Y.F. Wang, Y.X. Shang, Z.X. Gao, Y.C. Qi, M.Y. Li, Y. Men, H.O. Huang, Modulation of reduced graphene oxide membrane for low-fouling wastewater filtration: Membrane structure, wastewater property, and DFT calculation, J. Clean. Prod. 321 (2021) 128982. [260] X. Zhang, Selective separation membranes for fractionating organics and salts for industrial wastewater treatment: Design strategies and process assessment, J. Membr. Sci. 643 (2022) 120052. [261] D. Jeison, J.B. van Lier, On-line cake-layer management by trans-membrane pressure steady state assessment in Anaerobic Membrane Bioreactors for wastewater treatment, Biochem. Eng. J. 29 (3) (2006) 204–209. [262] T.A. Otitoju, A.L. Ahmad, B.S. Ooi, Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review, J. Water Process. Eng. 14 (2016) 41–59. [263] A. Ullah, H.J. Tanudjaja, M. Ouda, S.W. Hasan, J.W. Chew, Membrane fouling mitigation techniques for oily wastewater: A short review, J. Water Process. Eng. 43 (2021) 102293. [264] T. Riaz, A. Ahmad, S. Saleemi, M. Adrees, F. Jamshed, A.M. Hai, T. Jamil, Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal, Carbohydr. Polym. 153 (2016) 582–591. [265] A. El-Gendi, H. Abdallah, A. Amin, S.K. Amin, Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination, J. Mol. Struct. 1146 (2017) 14–22. [266] Z. Karim, A.P. Mathew, M. Grahn, J. Mouzon, K. Oksman, Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water, Carbohydr. Polym. 112 (2014) 668–676. [267] X.H. Ma, Z. Yang, Z.K. Yao, Z.L. Xu, C.Y. Tang, A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes, J. Membr. Sci. 525 (2017) 269–276. [268] F.F. Ghiggi, L.D. Pollo, N.S.M. Cardozo, I.C. Tessaro, Preparation and characterization of polyethersulfone/N-phthaloyl-chitosan ultrafiltration membrane with antifouling property, Eur. Polym. J. 92 (2017) 61–70. [269] E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, M.B. Ray, F. Parvizian, B. Van der Bruggen, Highly hydrophilic and antifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles, Chem. Eng. Res. Des. 132 (2018) 812–821. [270] P. Liu, C.T. Zhu, A.P. Mathew, Mechanically robust high flux graphene oxide - nanocellulose membranes for dye removal from water, J. Hazard. Mater. 371 (2019) 484–493. [271] A. Ghaee, M. Shariaty-Niassar, J. Barzin, T. Matsuura, A. Fauzi Ismail, Preparation of chitosan/cellulose acetate composite nanofiltration membrane for wastewater treatment, Desalin. Water Treat. 57 (31) (2016) 14453–14460. [272] N. Ghaemi, P. Daraei, F.S. Akhlaghi, Polyethersulfone nanofiltration membrane embedded by chitosan nanoparticles: Fabrication, characterization and performance in nitrate removal from water, Carbohydr. Polym. 191 (2018) 142–151. [273] S.A. Hosseini, M. Vossoughi, N.M. Mahmoodi, M. Sadrzadeh, Clay-based electrospun nanofibrous membranes for colored wastewater treatment, Appl. Clay Sci. 168 (2019) 77–86. [274] S. Fatemeh Seyedpour, A. Rahimpour, H. Mohsenian, M.J. Taherzadeh, Low fouling ultrathin nanocomposite membranes for efficient removal of manganese, J. Membr. Sci. 549 (2018) 205–216. [275] A. Shakeri, H. Salehi, M. Rastgar, Chitosan-based thin active layer membrane for forward osmosis desalination, Carbohydr. Polym. 174 (2017) 658–668. [276] E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, B. Van der Bruggen, F. Parvizian, Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: Chromium removal and antifouling enhancement, J. Ind. Eng. Chem. 62 (2018) 311–320. [277] G.-R. Xu, J.-N. Wang, C.-J. Li, Polyamide nanofilm composite membranes (NCMs) supported by chitosan coated electrospun nanofibrous membranes: Preparation and separation performance research, Desalination 328 (2013) 31-41. [278] F. Russo, F. Galiano, A. Iulianelli, A. Basile, A. Figoli, Biopolymers for sustainable membranes in CO2 separation: A review, Fuel Process. Technol. 213 (2021) 106643. [279] A. Iulianelli, C. Algieri, L. Donato, A. Garofalo, F. Galiano, G. Bagnato, A. Basile, A. Figoli, New PEEK-WC and PLA membranes for H2 separation, Int. J. Hydrog. Energy 42 (34) (2017) 22138–22148. [280] B.M. AlruwailI, U. Saeed, I. Ahmad, H. Al-Turaif, H. Aboalkhair, A.O.AlsaiarI, Development of multiwalled carbon nanotube-reinforced biodegradable polylactic acid/polybutylene succinate blend membrane, Membranes 11 (10) (2021) 760. [281] V. Vatanpour, A. Dehqan, S. Paziresh, S. Zinadini, A.A. Zinatizadeh, I. Koyuncu, Polylactic acid in the fabrication of separation membranes: A review, Sep. Purif. Technol. 296 (2022) 121433. [282] P. Tomietto, F. Russo, F. Galiano, P. Loulergue, S. Salerno, L. Paugam, J.L. Audic, L. De Bartolo, A. Figoli, Sustainable fabrication and pervaporation application of bio-based membranes: Combining a polyhydroxyalkanoate (PHA) as biopolymer and CyreneTM as green solvent, J. Membr. Sci. 643 (2022) 120061. [283] T.T. Zhang, H. Tian, X.Q. Yin, Z.M. Li, X.H. Zhang, J.X. Yang, L. Zhu, Solution blow spinning of polylactic acid to prepare fibrous oil adsorbents through morphology optimization with response surface methodology, J. Polym. Environ. 28 (3) (2020) 812–825. [284] B. Li, G.Q. Zhao, G.L. Wang, L. Zhang, J. Gong, Z.L. Shi, Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption, Sep. Purif. Technol. 257 (2021) 117949. [285] A. Iulianelli, F. Russo, F. Galiano, G. Desiderio, A. Basile, A. Figoli, PLA Easy Fil - White-based membranes for CO2 separation, Greenh. Gases 9 (2) (2019) 360–369. [286] M.S. Thomas, P.K.S. Pillai, M. Faria, N. Cordeiro, L. Kailas, N. Kalarikkal, S. Thomas, L.A. Pothen, Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(II) from water, J. Appl. Polym. Sci. 137 (34) (2020) 48993. [287] F. Morgan-Sagastume, S. Bengtsson, G. De Grazia, T. Alexandersson, L. Quadri, P. Johansson, P. Magnusson, A. Werker, Mixed-culture polyhydroxyalkanoate (PHA) production integrated into a food-industry effluent biological treatment: A pilot-scale evaluation, J. Environ. Chem. Eng. 8(6) (2020) 104469. [288] S. Chavan, B. Yadav, R.D. Tyagi, P. Drogui, A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks, Bioresour. Technol. 341 (2021) 125900. [289] J.F. Wang, S.J. Liu, J.Q. Huang, Z.X. Qu, A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges, Bioresour. Technol. 342 (2021) 126008. [290] L. De Donno Novelli, S. Moreno Sayavedra, E.R. Rene, Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives, Bioresour. Technol. 331 (2021) 124985. [291] N. Amanat, B. Matturro, M. Rossi, F. Valentino, M. Villano, M. Petrangeli Papini, Assessment of long-term fermentability of PHA-based materials from pure and mixed microbial cultures for potential environmental applications, Water 13 (7) (2021) 897. [292] S. Santorio, A. Fra-Vázquez, A. Val del Rio, A. Mosquera-Corral, Potential of endogenous PHA as electron donor for denitrification, Sci. Total Environ. 695 (2019) 133747. [293] W.M. Tu, D.D. Zhang, H. Wang, Z.Y. Lin, Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by PHA-storing denitrifiers integrating PHA accumulation with nitrate removal, Bioresour. Technol. 292 (2019) 121895. [294] J.Y. Chang, K. Sudesh, H.M. Bui, S.L. Ng, Biologically recovered polyhydroxyalkanoates (PHA) as novel biofilm carrier for Acid Orange 7 decolourization: Statistical optimization of physicochemical and biological factors, J. Water Process. Eng. 49 (2022) 103175. [295] K.A. Ishak, N.A.M. Safian, M.S.M. Annuar, Ecofriendly zinc oxide-decorated poly-3-hydroxyalkanoate—graft—poly-methyl acrylate copolymer film for photocatalysis-mediated water treatment, J. Polym. Environ. 30 (4) (2022) 1662–1672. [296] B.T. Zhu, N. Wei, Tyrosinase-functionalized polyhydroxyalkanoate bio-beads as a novel biocatalyst for degradation of bisphenol analogues, Environ. Int. 163 (2022) 107225. [297] C. Byrne, G. Subramanian, S.C. Pillai, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng. 6 (3) (2018) 3531–3555. [298] P. Sirajudheen, S. Meenakshi, Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue, Int. J. Biol. Macromol. 133 (2019) 253–261. [299] T.S. Jamil, H. Roland, H. Michael, R. Jens-Uwe, Homogeneous photocatalytic processes for degradation of some endocrine disturbing chemicals under UV irradiation, J. Water Process. Eng. 18 (2017) 159–168. [300] V.S. Kirankumar, S. Sumathi, A review on photodegradation of organic pollutants using spinel oxide, Mater. Today Chem. 18 (2020) 100355. [301] M. Antonopoulou, C. Kosma, T. Albanis, I. Konstantinou, An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale, Sci. Total Environ. 765 (2021) 144163. [302] G.Q. Han, Y.J. Sun, Visible-light-driven organic transformations on semiconductors, Mater. Today Phys. 16 (2021) 100297. [303] R. Saravanan, D. Manoj, J.Q. Qin, M. Naushad, F. Gracia, A.F. Lee, M.M. Khan, M.A. Gracia-Pinilla, Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production, Process. Saf. Environ. Prot. 120 (2018) 339–347. [304] A. Singh, V. Goyal, J. Singh, M. Rawat, Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs, Curr. Res. Green Sustain. Chem. 3 (2020) 100033. [305] G. Iervolino, I. Zammit, V. Vaiano, L. Rizzo, Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: A critical review, Top. Curr. Chem. 378 (1) (2020) 7. [306] V. Sathiya Narayanan, P. Varun Prasath, K. Ravichandran, D. Easwaramoorthy, Z. Shahnavaz, F. Mohammad, H.A. Al-Lohedan, S. Paiman, W.C. Oh, S. Sagadevan, Schiff-base derived chitosan impregnated copper oxide nanoparticles: An effective photocatalyst in direct sunlight, Mater. Sci. Semicond. Process. 119 (2020) 105238. [307] S. Vigneshwaran, J. Preethi, S. Meenakshi, Interface engineering of ultrathin multi-functional 2D draped chitosan for efficient charge separation on degradation of paraquat - A mechanistic study, J. Environ. Chem. Eng. 8(5) (2020) 104446. [308] K. Tanji, J.A. Navio, A. Chaqroune, J. Naja, F. Puga, M.C. Hidalgo, A. Kherbeche, Fast photodegradation of rhodamine B and caffeine using ZnO-hydroxyapatite composites under UV-light illumination, Catal. Today 388-389 (2022) 176–186. [309] K. Alorku, M. Manoj, Y.J. Cui, H. Zhou, A.H. Yuan, Nanomixture of 0-D ternary metal oxides (TiO2-SnO2-Al2O3) cooperating with 1-D hydroxyapatite (HAp) nanorods for RhB removal from synthetic wastewater and hydrogen evolution via water splitting, Chemosphere 273 (2021) 128575. [310] S. Vigneshwaran, P. Sirajudheen, C.P. Nabeena, S. Meenakshi, in situ fabrication of ternary TiO2 doped grafted chitosan/hydroxyapatite nanocomposite with improved catalytic performance for the removal of organic dyes: Experimental and systemic studies, Colloids Surf. A 611 (2021) 125789. [311] N.S. Alhokbany, R. Mousa, M. Naushad, S.M. Alshehri, T. Ahamad, Fabrication of Z-scheme photocatalysts g-C3N4/Ag3PO4/chitosan for the photocatalytic degradation of ciprofloxacin, Int. J. Biol. Macromol. 164 (2020) 3864–3872. [312] S. Zarei, N. Farhadian, R. Akbarzadeh, M. Pirsaheb, A. Asadi, Z. Safaei, Fabrication of novel 2D Ag-TiO2/γ-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate, Int. J. Biol. Macromol. 145 (2020) 926–935. [313] V. Soltaninejad, A. Maleki, A green, and eco-friendly bionanocomposite film (poly(vinyl alcohol)/TiO2/chitosan/chlorophyll) by photocatalytic ability, and antibacterial activity under visible-light irradiation, J. Photochem. Photobiol. A 404 (2021) 112906. [314] R.J. Zou, T.H. Xu, X.F. Lei, Q. Wu, S. Xue, Novel and efficient red phosphorus/hollow hydroxyapatite microsphere photocatalyst for fast removal of antibiotic pollutants, J. Phys. Chem. Solids 139 (2020) 109353. [315] S. Corrado, S. Sala, Bio-economy contribution to circular economy. E. Benetto, K. Gericke, M. Guiton, Eds. Designing Sustainable Technologies, Products and Policies. Cham: Springer International Publishing, (2018) 49–59. [316] R. Gurjar, M. Behera, Biopolymer: Production from biomass. Verma P, Biorefineries: A Step Towards Renewable and Clean Energy. Singapore: Springer, 2020: 371-390. [317] S.A.R. Shah, H. Ahmad, H. Alhazmi, M.K. Anwar, F. Iqbal, Utilization of self-consolidated green material for sustainable development: An environment friendly waste materials application for circular economy, Polymers 13 (17) (2021) 2985. [318] The Business Research Company, Chitosan Global Market Report 2023 – By Grade (Pharmaceutical Grade, Industrial Grade, Food Grade), By Source (Shrimp, Squid, Crab, Krill, Other Sources), By Application (Water Treatment, Food And Beverages, Cosmetics, Medical And Pharmaceuticals, Agrochemicals, Other Applications) – Market Size, Trends, And Global Forecast 2023-2032, 2023. https://www.thebusinessresearchcompany.com/report/chitosan-global-market-report (Accessed 3/17/2023 2023). [319] Nexight Group, 2020 Chitosan Technical Report, In: US Department of Agriculture (Ed.) USDA National Organic Program, US Department of Agriculture, Washington, DC, USA, 26 (2020). [320] A. Riofrio, T. Alcivar, H. Baykara, Environmental and economic viability of chitosan production in guayas-ecuador: A robust investment and life cycle analysis, ACS Omega 6 (36) (2021) 23038–23051. [321] S.J. Saji, A. Hebden, P. Goswami, C.Y. Du, A brief review on the development of alginate extraction process and its sustainability, Sustainability 14 (9) (2022) 5181. [322] Global Market Insights, Alginate Market Size By Type (High M, High G), By Product (Sodium, Calcium, Potassium, Propylene Glycol), By Application (Food & Beverage [Baking, Confectionery, Dairy Products, Meat Products], Medical & Pharmaceutical, Cosmetic, textile, Pulp & Paper), Industry Analysis Report, Regional Outlook, Application Potential, Covid-19 Impact Analysis, Price Trends, Competitive Market Share & Forecast, 2021 – 2027, 2021. [323] Research Reports World, Industrial Alginate Market [2023-2028], Latest Report Reveals Worldwide Industry Growth & Development, MarketWatch, 2023. [324] D. Ballesteros-Plata, Y. Zhang, E. Rodríguez-Castellón, T. Vincent, E. Guibal, Brown algal residue for the recovery of metal ions—application to La(III), Cd(II), and Ni(II) sorption, Adv. Sustainable Syst. 7 (3) (2023) 2200420. [325] H.L. Li, Y.Q. Geng, H.W. Shi, C. Wu, Z. Yu, H.X. Zhang, L.H. Chen, R.L. Xing, Biological mechanisms of invasive algae and meta-analysis of ecological impacts on local communities of marine organisms, Ecol. Indic. 146 (2023) 109763. [326] B. Alvarez Chavez, V. Raghavan, B. Tartakovsky, A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies, RSC Adv. 12 (25) (2022) 16105–16118. |
[1] | Xin Wan, Hui Jiang, Zhen Ye, Hang Zhou, Yimin Ma, Xuanrui Miao, Xun He, Kequan Chen. Viscosity reduction of tapioca starch by incorporating with molasses hydrocolloids[J]. 中国化学工程学报, 2023, 61(9): 165-172. |
[2] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves[J]. 中国化学工程学报, 2023, 59(7): 182-192. |
[3] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation[J]. 中国化学工程学报, 2023, 59(7): 222-230. |
[4] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
[5] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[6] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review[J]. 中国化学工程学报, 2023, 55(3): 277-292. |
[7] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions[J]. 中国化学工程学报, 2023, 54(2): 180-191. |
[8] | Aaron Albert Aryee, Chenping Gao, Runping Han, Lingbo Qu. Synthesis of a novel magnetic biomass-MOF composite for the efficient removal of phosphates: Adsorption mechanism and characterization study[J]. 中国化学工程学报, 2023, 62(10): 202-216. |
[9] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid[J]. 中国化学工程学报, 2023, 53(1): 133-141. |
[10] | Shutong Pang, Hualiang An, Xinqiang Zhao, Yanji Wang. Influence of Ca/P ratio on the catalytic performance of hydroxyapatite for decarboxylation of itaconic acid to methacrylic acid[J]. 中国化学工程学报, 2023, 53(1): 402-408. |
[11] | Lin-Bing Zou, Jue-Ying Gong, Xiao-Jie Ju, Zhuang Liu, Wei Wang, Rui Xie, Liang-Yin Chu. Smart membranes for biomedical applications[J]. 中国化学工程学报, 2022, 49(9): 34-45. |
[12] | Xing Zhang, Jingfeng Wu, Junhao Chen, Liang Lu, Lingjun Zhu, Shurong Wang. Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts[J]. 中国化学工程学报, 2022, 46(6): 126-133. |
[13] | Siyue Ren, Xiao Feng. Emergy evaluation of aromatics production from methanol and naphtha[J]. 中国化学工程学报, 2022, 46(6): 134-141. |
[14] | Zheng Wang, Sijia Li, Shengping Wang, Jiaxu Liu, Yujun Zhao, Xinbin Ma. Coupling effect of bifunctional ZnCe@SBA-15 catalyst in 1,3-butadiene production from bioethanol[J]. 中国化学工程学报, 2022, 45(5): 162-170. |
[15] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis[J]. 中国化学工程学报, 2022, 44(4): 157-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||