[1] H. Huang, L.J. Spadaccini, D.R. Sobel, Fuel-cooled thermal management for advanced aeroengines, J. Eng. Gas Turbines Power 126(2) (2004) 284-293. [2] H. Lander, A.C. Nixon, Endothermic fuels for hypersonic vehicles, J. Aircr. 8(4) (1971) 200-207. [3] R.P. Jiang, G.Z. Liu, X.Y. He, C.H. Yang, L. Wang, X.W. Zhang, Z.T. Mi, Supercritical thermal decompositions of normal- and iso-dodecane in tubular reactor, J. Anal. Appl. Pyrolysis 92(2) (2011) 292-306. [4] G.Q. Li, C.F. Zhang, H. Wei, H.J. Xie, Y.S. Guo, W.J. Fang, Investigations on the thermal decomposition of JP-10/iso-octane binary mixtures, Fuel 163(2016) 148-156. [5] H.W. Li, Y.T. Wang, L. Wang, X.W. Zhang, G.Z. Liu, Pyrolysis and coke deposition of JP-10 with decalin in regenerative cooling channels, Energy Fuels 36(12) (2022) 6096-6108. [6] C. Wang, C.P. Du, J.X. Shang, Y.H. Zhu, H.D. Yao, M.L. Xu, S.Q. Shan, W. Han, Z.G. Du, Z.B. Yang, D. Li, A comprehensive review of the thermal cracking stability of endothermic hydrocarbon fuels, J. Anal. Appl. Pyrolysis 169(2023) 105867. [7] J.D. Woodroffe, B.G. Harvey, Thermal cyclodimerization of isoprene for the production of high-performance sustainable aviation fuel, Energy Adv. 1(6) (2022) 338-343. [8] C. Zhao, Y. Kou, A.A. Lemonidou, X.B. Li, J.A. Lercher, Highly selective catalytic conversion of phenolic bio-oil to alkanes, Angew. Chem. Int. Ed Engl. 48(22) (2009) 3987-3990. [9] T.H. Jia, S. Gong, L. Pan, C. Deng, J.J. Zou, X.W. Zhang, Impact of deep hydrogenation on jet fuel oxidation and deposition, Fuel 264(2020) 116843. [10] Q.M. Sun, Z.T. Mi, X.W. Zhang, Determination of critical properties(tc, pc) of endothermic hydrocarbon fuels-RP-3 and simulated JP-7, J. Fuel Chem. Technol. 34(4) (2006) 466-470. [11] W.J. Zhou, W.Z. Li, S.Q. Song, Z.H. Zhou, L.H. Jiang, G.Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, P. Tsiakaras, Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells, J. Power Sources 131(1-2) (2004) 217-223. [12] S. Hermans, C. Diverchy, O. Demoulin, V. Dubois, E.M. Gaigneaux, M. Devillers, Nanostructured Pd/C catalysts prepared by grafting of model carboxylate complexes onto functionalized carbon, J. Catal. 243(2) (2006) 239-251. [13] J.H. Park, H. Ur Rasheed, K.H. Cho, H.C. Yoon, K.B. Yi, Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons, Korean J. Chem. Eng. 37(6) (2020) 1029-1035. [14] D.A. Sun, Y.M. Du, J.W. Zhang, Y. Jiao, Y. Li, Z.X. Wang, C.Y. Li, H. Feng, J. Lu, Effects of molecular structures on the pyrolysis and anti-coking performance of alkanes for thermal management, Fuel 194(2017) 266-273. [15] D.D. Wang, C.M. Gong, Q. Zhu, J.L. Wang, X.Y. Li, Study for pyrolysis of ethylbenzene and xylene under supercritical pressure, Acta Chim. Sinica 71(1) (2013) 88. [16] J. Yu, S. Eser, Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 2. decalin and tetralin, Ind. Eng. Chem. Res. 37(12) (1998) 4601-4608. [17] M.J. DeWitt, T. Edwards, L. Shafer, D. Brooks, R. Striebich, S.P. Bagley, M.J. Wornat, Effect of aviation fuel type on pyrolytic reactivity and deposition propensity under supercritical conditions, Ind. Eng. Chem. Res. 50(18) (2011) 10434-10451. [18] R. Bounaceur, G. Scacchi, P.M. Marquaire, F. Domine, O. Brevart, D. Dessort, B. Pradier, Inhibiting effect of tetralin on the pyrolytic decomposition of hexadecane. comparison with toluene, Ind. Eng. Chem. Res. 41(19) (2002) 4689-4701. [19] D.A. Sun, C.Y. Li, Y.M. Du, L.G. Kou, J.W. Zhang, Y. Li, Z.X. Wang, J.W. Li, H. Feng, J. Lu, Effects of endothermic hydrocarbon fuel composition on the pyrolysis and anti-coking performance under supercritical conditions, Fuel 239(2019) 659-666. [20] F.Q. Chen, J. Hao, Y.Y. Yu, D.G. Cheng, X.L. Zhan, The influence of external acid strength of hierarchical ZSM-5 zeolites on n-heptane catalytic cracking, Microporous Mesoporous Mater. 330(2022) 111575. [21] J. Yu, S. Eser, Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 1. n-butylbenzene and n-butylcyclohexane, Ind. Eng. Chem. Res. 37(12) (1998) 4591-4600. [22] X.M. Qin, H. Chi, W.J. Fang, Y.S. Guo, L. Xu, Thermal stability characterization of n-alkanes from determination of produced aromatics, J. Anal. Appl. Pyrolysis 104(2013) 593-602. [23] O. Herbinet, P.M. Marquaire, F. Battin-Leclerc, R. Fournet, Thermal decomposition of n-dodecane: experiments and kinetic modeling, J. Anal. Appl. Pyrolysis 78(2) (2007) 419-429. [24] L. Yue, G.Q. Li, G.J. He, Y.S. Guo, L. Xu, W.J. Fang, Impacts of hydrogen to carbon ratio (H/C) on fundamental properties and supercritical cracking performance of hydrocarbon fuels, Chem. Eng. J. 283(2016) 1216-1223. [25] X.Q. Gao, Z.H. Yao, W.C. Li, G.M. Deng, L. He, R. Si, J.G. Wang, A.H. Lu, Calcium-modified PtSn/Al2O3 catalyst for propane dehydrogenation with high activity and stability, ChemCatChem 15(7) (2023) e202201691. [26] L.F. Albright, J.C. Marek, Mechanistic model for formation of coke in pyrolysis units producing ethylene, Ind. Eng. Chem. Res. 27(5) (1988) 755-759. [27] J.M. Andresen, J.J. Strohm, L. Sun, C.S. Song, Relationship between the formation of aromatic compounds and solid deposition during thermal degradation of jet fuels in the pyrolytic regime, Energy Fuels 15(3) (2001) 714-723. |