[1] J. Hong, G. Chaudhry, J.G. Brisson, R. Field, M. Gazzino, A.F. Ghoniem, Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor, Energy 34(9)(2009)1332-1340. [2] E.S. Rubin, H. Mantripragada, A. Marks, P. Versteeg, J. Kitchin, The outlook for improved carbon capture technology, Prog. Energy Combust. Sci. 38(5)(2012)630-671. [3] S. Yadav, S.S. Mondal, A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology, Fuel 308(2022)122057. [4] Y. Shi, W.Q. Zhong, Y.J. Shao, X.J. Liu, Energy efficiency analysis of pressurized oxy-coal combustion system utilizing circulating fluidized bed, Appl. Therm. Eng. 150(2019)1104-1115. [5] Y.Q. Duan, L.B. Duan, J. Wang, E.J. Anthony, Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed, Fuel 242(2019)374-381. [6] L. Li, L.B. Duan, Z.H. Yang, C.S. Zhao, Pressurized oxy-fuel combustion characteristics of single coal particle in a visualized fluidized bed combustor, Combust. Flame 211(2020)218-228. [7] Q.W. Liu, W.Q. Zhong, A.B. Yu, C.H. Wang, Co-firing of coal and biomass under pressurized oxy-fuel combustion mode in a 10 kWth fluidized bed:Nitrogen and sulfur pollutants, Chem. Eng. J. 450(2022)138401. [8] L. Pang, Y.J. Shao, W.Q. Zhong, H. Liu, Experimental investigation on the coal combustion in a pressurized fluidized bed, Energy 165(2018)1119-1128. [9] D. Stokie, P. Verma, B.M. Kumfer, G. Yablonsky, A.K. Suresh, R.L. Axelbaum, Pilot-scale testing of direct contact cooler for the removal of SOx and NOx from the flue gas of pressurized oxy-coal combustion, Chem. Eng. J. 414(2021)128757. [10] M. Vodička, N.E. Haugen, A. Gruber, J. Hrdlička, NOx formation in oxy-fuel combustion of lignite in a bubbling fluidized bed-Modelling and experimental verification, Int. J. Greenh. Gas Contr. 76(2018)208-214. [11] D.Y. Liu, J.L. Song, J.L. Ma, X.P. Chen, B. van Wachem, Gas flow distribution and solid dynamics in a thin rectangular pressurized fluidized bed using CFD-DEM simulation, Powder Technol. 373(2020)369-383. [12] I. Sidorenko, M.J. Rhodes, Influence of pressure on fluidization properties, Powder Technol. 141(1-2)(2004)137-154. [13] X.L. Zhu, Y.B. Liu, Y.H. Li, H.G. Wang, Z.B. Wang, Bubble behaviors of Geldart B particle in a pseudo two-dimensional pressurized fluidized bed, Particuology 79(2023)121-132. [14] P.F. Dong, Q.Y. Tu, H.G. Wang, Z.P. Zhu, Effects of pressure on flow characteristics in a pressurized circulating fluidized bed, Particuology 59(2021)16-23. [15] M. Richtberg, R. Richter, K.E. Wirth, Characterization of the flow patterns in a pressurized circulating fluidized bed, Powder Technol. 155(2)(2005)145-152. [16] W. Nie, R.T. Feng, J.G. Li, Z.H. Hao, H.J. Zhan, Z.H. Cheng, Y.T. Fang, Gas-solid flow behaviors in a pressurized multi-stage circulating fluidized bed with Geldart group B particles, Int. J. Chem. React. Eng. 17(12)(2019)20190087. [17] R.T. Feng, J.G. Li, L.B. Dong, Z.H. Hao, Z.R. Ba, H.J. Zhan, Y.T. Fang, Gas-solid flow behaviors in a multi-stage circulating fluidized bed under elevated pressure, Chem. Eng. Sci. 196(2019)1-13. [18] M. Tsukada, D. Nakanishi, M. Horio, The effect of pressure on the phase transition from bubbling to turbulent fluidization, Int. J. Multiph. Flow 19(1)(1993)27-34. [19] X.L. Zhu, P.F. Dong, Q.Y. Tu, Z.P. Zhu, W.Q. Yang, H.G. Wang, Investigation of gas-solids flow characteristics in a pressurised circulating fluidised bed by experiment and simulation, Powder Technol. 366(2020)420-433. [20] X.L. Zhu, P.F. Dong, Q.Y. Tu, Z.P. Zhu, W.Q. Yang, H.G. Wang, Investigation of gas-solid flow characteristics in the cyclone dipleg of a pressurised circulating fluidised bed by ECT measurement and CPFD simulation, Meas. Sci. Technol. 30(5)(2019)054002. [21] J.D. Hu, D.Y. Liu, H. Li, C. Liang, X.P. Chen, Experimental study of the solid circulation rate in a pressurized circulating fluidized bed, Particuology 56(2021)207-214. [22] D.Y. Liu, J.D. Hu, J.L. Song, C. Liang, C.L. Xu, X.P. Chen, Effect of elevated pressure on gas-solid flow characteristics in a circulating fluidized bed, Powder Technol. 366(2020)470-476. [23] Y.J. Gao, F.J. Muzzio, M.G. Ierapetritou, A review of the residence time distribution (RTD) applications in solid unit operations, Powder Technol. 228(2012)416-423. [24] S. Mahmoudi, J.P.K. Seville, J. Baeyens, The residence time distribution and mixing of the gas phase in the riser of a circulating fluidized bed, Powder Technol. 203(2)(2010)322-330. [25] J.W. Zhang, G.W. Xu, Scale-up of bubbling fluidized beds with continuous particle flow based on particle-residence-time distribution, Particuology 19(2015)155-163. [26] B. Lan, J. Xu, P. Zhao, Z. Zou, J.W. Wang, Q.S. Zhu, Scale-up effect of residence time distribution of polydisperse particles in continuously operated multiple-chamber fluidized beds, Chem. Eng. Sci. 244(2021)116809. [27] M.J. Rhodes, S. Zhou, T. Hirama, H. Cheng, Effects of operating conditions on longitudinal solids mixing in a circulating fluidized bed riser, AIChE. J. 37(10)(1991)1450-1458. [28] C.W. Chan, J. Seville, Z.F. Yang, J. Baeyens, Particle motion in the CFB riser with special emphasis on PEPT-imaging of the bottom section, Powder Technol. 196(3)(2009)318-325. [29] M. Van de Velden, J. Baeyens, J.P.K. Seville, X. Fan, The solids flow in the riser of a circulating fluidised bed (CFB) viewed by positron emission particle tracking (PEPT), Powder Technol. 183(2)(2008)290-296. [30] A.T. Harris, J.F. Davidson, R.B. Thorpe, A novel method for measuring the residence time distribution in short time scale particulate systems, Chem. Eng. J. 89(1-3)(2002)127-142. [31] A.T. Harris, J.F. Davidson, R.B. Thorpe, Particle residence time distributions in circulating fluidised beds, Chem. Eng. Sci. 58(11)(2003)2181-2202. [32] S.S. Chapadgaonkar, Y.P. Setty, Residence time distribution of solids in a fluidised bed. Indian J. Chem. Technol. 6(1999)100-106. [33] K. Luo, F. Wu, S.L. Yang, M.M. Fang, J.R. Fan, High-fidelity simulation of the 3-D full-loop gas-solid flow characteristics in the circulating fluidized bed, Chem. Eng. Sci. 123(2015)22-38. [34] L.N. Hua, J.W. Wang, Residence time distribution of particles in circulating fluidized bed risers, Chem. Eng. Sci. 186(2018)168-190. [35] X.G. Shi, X.Y. Lan, F. Liu, Y.H. Zhang, J.S. Gao, Effect of particle size distribution on hydrodynamics and solids back-mixing in CFB risers using CPFD simulation, Powder Technol. 266(2014)135-143. [36] H. Yoo, H. Moon, S. Choi, Y.K. Park, H.H. Cho, Effect of the jet direction of gas nozzle on the residence time distribution of solids in circulating fluidized bed risers, J. Taiwan Inst. Chem. Eng. 71(2017)235-243. [37] Q. Zhou, J.W. Wang, J.H. Li, Three-dimensional simulation of dense suspension upflow regime in high-density CFB risers with EMMS-based two-fluid model, Chem. Eng. Sci. 107(2014)206-217. [38] D.M. Snider, S.M. Clark, P.J. O'Rourke, Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers, Chem. Eng. Sci. 66(6)(2011)1285-1295. [39] J.R. Gu, Y.J. Shao, W.Q. Zhong, 3D simulation on pressurized oxy-fuel combustion of coal in fluidized bed, Adv. Powder Technol. 31(7)(2020)2792-2805. [40] S.L. Yang, F.H. Fan, Y.G. Wei, J.H. Hu, H. Wang, S.H. Wu, Three-dimensional MP-PIC simulation of the steam gasification of biomass in a spouted bed gasifier, Energy Convers. Manag. 210(2020)112689. [41] A. Klimanek, J. Bigda, CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor, Energy 160(2018)710-719. [42] X.H. Liu, S. Wang, S.L. Yang, H. Wang, Investigation of cluster property in the riser of circulating fluidized bed with a wide particle size distribution, Powder Technol. 390(2021)273-291. [43] S.L. Yang, S. Wang, H. Wang, Impact of polydispersity on the flow dynamics in the riser of a circulating fluidized bed, Powder Technol. 381(2021)489-502. [44] C. Li, Q. Eri, Comparison between two Eulerian-Lagrangian methods:CFD-DEM and MPPIC on the biomass gasification in a fluidized bed, Biomass Convers. Bior. 13(2023)3819-3836. [45] A. Vaidheeswaran, A. Gel, M.A. Clarke, W.A. Rogers, Assessment of model parameters in MFiX particle-in-cell approach, Adv. Powder Technol. 32(8)(2021)2962-2977. [46] M.J. Andrews, P.J. O'Rourke, The multiphase particle-in-cell (MP-PIC) method for dense particulate flows, Int. J. Multiph. Flow 22(2)(1996)379-402. [47] D.M. Snider, An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, J. Comput. Phys. 170(2)(2001)523-549. [48] D. Gidaspow, J. Jung, R.K. Singh, Hydrodynamics of fluidization using kinetic theory:An emerging paradigm, Powder Technol. 148(2-3)(2004)123-141. [49] S.E. Harris, D.G. Crighton, Solitons, solitary waves, and voidage disturbances in gas-fluidized beds, J. Fluid Mech. 266(1994)243-276. [50] F.M. Auzerais, R. Jackson, W.B. Russel, The resolution of shocks and the effects of compressible sediments in transient settling, J. Fluid Mech. 195(1988)437-462. [51] Y. Wu, D.Y. Liu, J.D. Hu, J.L. Ma, X.P. Chen, Comparative study of two fluid model and dense discrete phase model for simulations of gas-solid hydrodynamics in circulating fluidized beds, Particuology 55(2021)108-117. [52] A. Nikolopoulos, A. Stroh, M. Zeneli, F. Alobaid, N. Nikolopoulos, J. Strohle, S. Karellas, B. Epple, P. Grammelis, Numerical investigation and comparison of coarse grain CFD-DEM and TFM in the case of a 1 MWth fluidized bed carbonator simulation, Chem. Eng. Sci. 163(2017)189-205. [53] P. Ostermeier, S. DeYoung, A. Vandersickel, S. Gleis, H. Spliethoff, Comprehensive investigation and comparison of TFM, DenseDPM and CFD-DEM for dense fluidized beds, Chem. Eng. Sci. 196(2019)291-309. [54] J.L. Song, D.Y. Liu, J.L. Ma, X.P. Chen, Effect of elevated pressure on bubble properties in a two-dimensional gas-solid fluidized bed, Chem. Eng. Res. Des. 138(2018)21-31. [55] D.Y. Liu, X.P. Chen, Lateral solids dispersion coefficient in large-scale fluidized beds, Combust. Flame 157(11)(2010)2116-2124. [56] D. Bai, E. Shibuya, Y. Masuda, K. Nishio, N. Nakagawa, K. Kato, Distinction between upward and downward flows in circulating fluidized beds, Powder Technol. 84(1)(1995)75-81. [57] J.R. Grace, High-velocity fluidized bed reactors, Chem. Eng. Sci. 45(8)(1990)1953-1966. [58] S. Mahmoudi, C.W. Chan, A. Brems, J. Seville, J. Baeyens, Solids flow diagram of a CFB riser using Geldart B-type powders, Particuology 10(1)(2012)51-61. |