中国化学工程学报 ›› 2024, Vol. 69 ›› Issue (5): 177-191.DOI: 10.1016/j.cjche.2023.09.017
Hebin Li1, Zifei Meng1, Dehua Wang1, Ye Lu1, Longlong Jiang1, Le Zhang2, Hanbin Wang3,4, Xiaoxiong Wang1,5,6,7
收稿日期:
2023-03-07
修回日期:
2023-09-10
出版日期:
2024-05-28
发布日期:
2024-07-01
通讯作者:
Le Zhang,E-mail:zhangle@jsnu.edu.cn;Hanbin Wang,E-mail:wanghanbin_mtrc@caep.cn;Xiaoxiong Wang,E-mail:wangxiaoxiong69@163.com
基金资助:
Hebin Li1, Zifei Meng1, Dehua Wang1, Ye Lu1, Longlong Jiang1, Le Zhang2, Hanbin Wang3,4, Xiaoxiong Wang1,5,6,7
Received:
2023-03-07
Revised:
2023-09-10
Online:
2024-05-28
Published:
2024-07-01
Contact:
Le Zhang,E-mail:zhangle@jsnu.edu.cn;Hanbin Wang,E-mail:wanghanbin_mtrc@caep.cn;Xiaoxiong Wang,E-mail:wangxiaoxiong69@163.com
Supported by:
摘要: In recent years, nanogenerators (NGs) have attracted wide attention in the energy field, among which triboelectric nanogenerators (TENGs) have shown superior performance. Multiple reports of electrospinning (ES)-based TENGs have been reported, but there is a lack of deep analysis of the designing method from microstructure, limiting the creative of new ES-based TENGs. Most TENGs use polymer materials to achieve corresponding design, which requires structural design of polymer materials. The existing polymer molding design methods include macroscopic molding methods, such as injection, compression, extrusion, calendering, etc., combined with liquid-solid changes such as soluting and melting; it also includes micro-nano molding technology, such as melt-blown method, coagulation bath method, ES method, and nanoimprint method. In fact, ES technology has good controllability of thickness dimension and rich means of nanoscale structure regulation. At present, these characteristics have not been reviewed. Therefore, in this paper, we combine recent reports with some microstructure regulation functions of ES to establish a more general TENGs design method. Based on the rich microstructure research results in the field of ES, much more new types of TENGs can be designed in the future.
Hebin Li, Zifei Meng, Dehua Wang, Ye Lu, Longlong Jiang, Le Zhang, Hanbin Wang, Xiaoxiong Wang. Application of different fiber structures and arrangements by electrospinning in triboelectric nanogenerators[J]. 中国化学工程学报, 2024, 69(5): 177-191.
Hebin Li, Zifei Meng, Dehua Wang, Ye Lu, Longlong Jiang, Le Zhang, Hanbin Wang, Xiaoxiong Wang. Application of different fiber structures and arrangements by electrospinning in triboelectric nanogenerators[J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 177-191.
[1] J.H. He, Y. Liu, L. Xu, Apparatus for preparing electrospun nanofibres:a comparative review, Mater. Sci. Technol. 26(11)(2010)1275-1287. [2] J.D. Beisel, J. Kyeremateng, L. Purkett, J.M. Andriolo, J.L. Skinner, Analytical parametric model used to study the influence of electrostatic force on surface coverage during electrospinning of polymer fibers, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 32(6)(2014)06FI03. [3] J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, Electrospinning and electrospun nanofibers:methods, materials, and applications, Chem. Rev. 119(8)(2019)5298-5415. [4] W.D. Zhu, Y. Cheng, C. Wang, N. Pinna, X.F. Lu, Transition metal sulfides meet electrospinning:versatile synthesis, distinct properties and prospective applications, Nanoscale 13(20)(2021)9112-9146. [5] W. Song, M.X. Li, C. Wang, X.F. Lu, Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting, Carbon Energy 3(1)(2021)101-128. [6] K. Ng, P. Azari, H.Y. Nam, F. Xu, B. Pingguan-Murphy, Electrospin-coating of paper:a natural extracellular matrix inspired design of scaffold, Polymers 11(4)(2019)650. [7] X.R. Xie, Y.J. Chen, X.Y. Wang, X.Q. Xu, Y.H. Shen, A.U.R. Khan, A. Aldalbahi, A.E. Fetz, G.L. Bowlin, M. El-Newehy, X.M. Mo, Electrospinning nanofiber scaffolds for soft and hard tissue regeneration, J. Mater. Sci. Technol. 59(2020)243-261. [8] M.Y. Cao, F. Gu, C.C. Rao, J.Z. Fu, P. Zhao, Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5, Sci. Total Environ. 666(2019)1011-1021. [9] Y.J. Hu, Y.L. Wang, S.D. Tian, A.F. Yu, L.Y. Wan, J.Y. Zhai, Performance-enhanced and washable triboelectric air filter based on polyvinylidene fluoride/UiO-66 composite nanofiber membrane, Macromol. Mater. Eng. 306(8)(2021)2100128. [10] J. Liu, B. Yang, L.J. Lu, X.L. Wang, X.Y. Li, X. Chen, J.Q. Liu, Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P (VDF-TrFE) nanofibers, Sens. Actuat. A Phys. 303(2020)111796. [11] J. Niu, C. Li, Q. Fang, M.Z. Fan, X.R. Liu, P.H. Hu, Large mechanical-to-electric output originated from optimized configuration in P (VDF-TrFE)-based nanocomposite fibrous membrane as wearable nanogenerator, Compos. Sci. Technol. 220(2022)109266. [12] S.A. Graham, H. Patnam, P. Manchi, M.V. Paranjape, A. Kurakula, J.S. Yu, Biocompatible electrospun fibers-based triboelectric nanogenerators for energy harvesting and healthcare monitoring, Nano Energy 100(2022)107455. [13] H.T. Meng, H.O. Liang, T. Xu, J. Bai, C.P. Li, Crosslinked electrospinning membranes with contamination resistant properties for highly efficient oil-water separation, J. Polym. Res. 28(9)(2021)347. [14] D.Y. Li, X.J. Zhang, S.Y. Zhang, D.S. Wang, Z.Y. Wang, Y. Liu, X.F. Yu, Q. Zhao, B.S. Xing, A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment, Chemosphere 267(2021)128916. [15] M.K. Selatile, S.S. Ray, V. Ojijo, R. Sadiku, Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination, RSC Adv. 8(66)(2018)37915-37938. [16] P. Zhang, L.J. Wang, X. Zhang, J.H. Hu, G.S. Shao, Three-dimensional porous networks of ultra-long electrospun SnO2 nanotubes with high photocatalytic performance, Nanomicro Lett. 7(1)(2015)86-95. [17] Y.Q. Cai, B. Xu, Y.S. Zhang, Q.Y. Tian, X.D. Xu, Q.S. Song, D.Z. Li, J. Xu, I. Buchvarov, High power and energy generation in a Nd:YAG single-crystal fiber laser at 1834 nm, Photon. Res. 7(2)(2019)162. [18] R.D.I.G. Dharmasena, K.D.G.I. Jayawardena, C.A. Mills, R.A. Dorey, S.R.P. Silva, A unified theoretical model for Triboelectric Nanogenerators, Nano Energy 48(2018)391-400. [19] Y.L. Chen, Y. Zhang, T.T. Zhan, Z.M. Lin, S.L. Zhang, H.Y. Zou, G.B. Zhang, C.W. Zou, Z.L. Wang, An elastic triboelectric nanogenerator for harvesting random mechanical energy with multiple working modes, Adv. Mater. Technol. 4(7)(2019)201900075. [20] W.P. Sun, Z.Y. Jiang, X.P. Xu, Q.K. Han, F.L. Chu, Electromechanical coupling modeling and analysis of contact-separation mode triboelectric nanogenerators, Int. J. Non Linear Mech. 136(2021)103773. [21] Y. Lee, S.G. Kang, J. Jeong, Sliding triboelectric nanogenerator with staggered electrodes, Nano Energy 86(2021)106062. [22] P.S. Rui, W. Zhang, P.H. Wang, Super-durable and highly efficient electrostatic induced nanogenerator circulation network initially charged by a triboelectric nanogenerator for harvesting environmental energy, ACS Nano 15(4)(2021)6949-6960. [23] Z.C. Shao, J.S. Chen, P. Li, K.X. Gao, S.N. Yang, M.P. Xiong, Q. Fu, P.Y. Li, L.W. Mi, Static inductive effect:a novel enhancement strategy for the output performance of organic triboelectric nanogenerator, Dyes Pigm. 207(2022)110682. [24] D. Liu, L. Zhou, S. Cui, Y. Gao, S. Li, Z. Zhao, Z. Yi, H. Zou, Y. Fan, J. Wang, Z.L. Wang, Standardized measurement of dielectric materials'intrinsic triboelectric charge density through the suppression of air breakdown, Nat. Commun. 13(1)(2022)6019. [25] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, Z.L. Wang, Quantifying the triboelectric series, Nat. Commun. 10(1)(2019)1427. [26] Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z.L. Wang, Selection rules of triboelectric materials for direct-current triboelectric nanogenerator, Nat. Commun. 12(1)(2021)4686. [27] C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai, X. He, P. Wang, Y.C. Wang, P. Feng, D. Li, Z.L. Wang, On the electron-transfer mechanism in the contact-electrification effect, Adv. Mater. 30(15)(2018) e1706790. [28] L.N. Zhou, J.P. Wu, W.Z. Song, X.X. Wang, N. Wang, M. Yu, Z.Y. Fan, S. Ramakrishna, Y.Z. Long, High output achieved by sliding electrification of an electrospun nano-grating, Nanoscale 13(41)(2021)17417-17427. [29] W.X. Yang, X.L. Wang, H.Q. Li, J. Wu, Y.Q. Hu, Z.H. Li, H. Liu, Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator, Nano Energy 57(2019)41-47. [30] J.L. Gong, B.G. Xu, X.M. Tao, Breath figure micromolding approach for regulating the microstructures of polymeric films for triboelectric nanogenerators, ACS Appl. Mater. Interfaces 9(5)(2017)4988-4997. [31] J.D. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, A. Radenovic, Single-layer MoS2 nanopores as nanopower generators, Nature 536(7615)(2016)197-200. [32] Q. Jiang, B. Chen, K.W. Zhang, Y. Yang, Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit, ACS Appl. Mater. Interfaces 9(50)(2017)43716-43723. [33] J.Q. Li, W.Y. Liu, X.X. Xia, H.C. Zhou, L.T. Jing, X. Peng, S.F. Jiang, Reducing the burn marks on injection-molded parts by external gas-assisted injection molding, Polymers 13(23)(2021)4087. [34] M. Iliut, C. Silva, S. Herrick, M. McGlothlin, A. Vijayaraghavan, Graphene and water-based elastomers thin-film composites by dip-moulding, Carbon 106(2016)228-232. [35] T. Dreier, A. Riaz, A. Ahrend, C. Polley, S. Bode, B. Milkereit, H. Seitz, 3D printing of aluminum oxide via composite extrusion modeling using a ceramic injection molding feedstock, Mater. Des. 227(2023)111806. [36] A.K. Vynckier, H. Lin, J.A. Zeitler, J.F. Willart, E. Bongaers, J. Voorspoels, J.P. Remon, C. Vervaet, Calendering as a direct shaping tool for the continuous production of fixed-dose combination products via co-extrusion, Eur. J. Pharm. Biopharm. 96(2015)125-131. [37] G.H. Liu, J. Guan, X.F. Wang, J.Y. Yu, B. Ding, Polylactic acid (PLA) melt-blown nonwovens with superior mechanical properties, ACS Sustainable Chem. Eng. 11(10)(2023)4279-4288. [38] C. Yang, X.Y. Jiang, X. Gao, H.Y. Wang, L. Li, N. Hussain, J.W. Xie, Z.K. Cheng, Z.W. Li, J.F. Yan, M.L. Zhong, L.H. Zhao, H. Wu, Saving 80% polypropylene in facemasks by laser-assisted melt-blown nanofibers, Nano Lett. 22(17)(2022)7212-7219. [39] J. Drabek, M. Zatloukal, Meltblown technology for production of polymeric microfibers/nanofibers:a review, Phys. Fluids 31(9)(2019)091301. [40] J.F. Deng, C. Liu, M. Madou, Ultra-thin carbon nanofibers based on graphitization of near-field electrospun polyacrylonitrile, Nanoscale 12(19)(2020)10521-10531. [41] W.C. Lo, C.C. Chen, Y.K. Fuh, 3D stacked near-field electrospun nanoporous PVDF-TrFE nanofibers as self-powered smart sensing in gait big data analytics, Adv. Mater. Technol. 6(4)(2021)202000779. [42] L.F. Deravi, N.R. Sinatra, C.O. Chantre, A.P. Nesmith, H.Y. Yuan, S.K. Deravi, J.A. Goss, L.A. MacQueen, M.R. Badrossamy, G.M. Gonzalez, M.D. Phillips, K.K. Parker, Design and fabrication of fibrous nanomaterials using pull spinning, Macromol. Mater. Eng. 302(3)(2017)201600404. [43] A. Nadaf, A. Gupta, N. Hasan, Fauziya, S. Ahmad, P. Kesharwani, F.J. Ahmad, Recent update on electrospinning and electrospun nanofibers:current trends and their applications, RSC Adv. 12(37)(2022)23808-23828. [44] R.K. Mishra, P. Mishra, K. Verma, A. Mondal, R.G. Chaudhary, M.M. Abolhasani, S. Loganathan, Electrospinning production of nanofibrous membranes, Environ. Chem. Lett. 17(2)(2019)767-800. [45] I. Shepa, E. Mudra, J. Dusza, Electrospinning through the prism of time, Mater. Today Chem. 21(2021)100543. [46] Lord, Rayleigh, F.J.P.M. Rs, XX. On the equilibrium of liquid conducting masses charged with electricity, Philosophical Magazine 14(87)(2009)184-186. [47] J.X. Cheng, Q.L. Huang, Y. Huang, W. Luo, Q. Hu, C.F. Xiao, Study on a novel PTFE membrane with regular geometric pore structures fabricated by near-field electrospinning, and its applications, J. Membr. Sci. 603(2020)118014. [48] G.E. Fair, H.J. Kim, H. Lee, T.A. Parthasarathy, K.A. Keller, Z.D. Miller, Development of ceramic fibers for high-energy laser applications, SPIE Defense, Security, and Sensing. Proc SPIE 8039, Laser Technology for Defense and Security VII Orlando, Florida, USA.(2011)8039146-8039154. [49] A. Babu, I. Aazem, R. Walden, S. Bairagi, D.M. Mulvihill, S.C. Pillai, Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing, Chem. Eng. J. 452(2023)139060. [50] R.E. Neisiany, M.S. Enayati, A. Kazemi-Beydokhti, O. Das, S. Ramakrishna, Multilayered bio-based electrospun membranes:a potential porous media for filtration applications, Front. Mater. 7(2020)67. [51] M. Rahmati, D.K. Mills, A.M. Urbanska, M.R. Saeb, J.R. Venugopal, S. Ramakrishna, M. Mozafari, Electrospinning for tissue engineering applications, Prog. Mater. Sci. 117(2021)100721. [52] X.M. Wang, F.Z. Sun, G.C. Yin, Y.T. Wang, B. Liu, M.D. Dong, Tactile-sensing based on flexible PVDF nanofibers via electrospinning:a review, Sensors 18(2)(2018)330. [53] R. Zhao, X.F. Lu, C. Wang, Electrospinning based all-nano composite materials:recent achievements and perspectives, Compos. Commun. 10(2018)140-150. [54] K. Li, M. McGuire, A. Lupini, L. Skolrood, F. List, B. Ozpineci, S. Ozcan, T. Aytug, Copper-carbon nanotube composites enabled by electrospinning for advanced conductors, ACS Appl. Nano Mater. 3(7)(2020)6863-6875. [55] W.T. Kim, D.C. Park, W.H. Yang, C.H. Cho, W.Y. Choi, Effects of electrospinning parameters on the microstructure of PVP/TiO2 nanofibers, Nanomaterials 11(6)(2021)1616. [56] Z.K. Xu, R.F. Zhao, X.Y. Huang, X.Y. Wang, S.Q. Tang, Fabrication and biocompatibility of agarose acetate nanofibrous membrane by electrospinning, Carbohydr. Polym. 197(2018)237-245. [57] G.H. Kim, H. Nam, W. Choi, T. An, G. Lim, Electrospinning:electrospinning nanofiber on an insulating surface with a patterned functional electrolyte electrode (adv. mater. interfaces 5/2018), Adv. Mater. Interfaces 5(5)(2018)1870019. [58] S. Chakraborty, I.C. Liao, A. Adler, K.W. Leong, Electrohydrodynamics:a facile technique to fabricate drug delivery systems, Adv. Drug Deliv. Rev. 61(12)(2009)1043-1054. [59] Z. Liu, K.Y. Ju, Z.Q. Wang, W. Li, H.Z. Ke, J.H. He, Electrospun jets number and nanofiber morphology effected by voltage value:numerical simulation and experimental verification, Nanoscale Res. Lett. 14(1)(2019)310. [60] X. Li, Z. Li, L. Wang, G. Ma, F. Meng, R.H. Pritchard, E.L. Gill, Y. Liu, Y.Y. Huang, Low-voltage continuous electrospinning patterning, ACS Appl. Mater. Interfaces 8(47)(2016)32120-32131. [61] B.K. Park, I.C. Um, Effect of relative humidity on the electrospinning performance of regenerated silk solution, Polymers 13(15)(2021)2479. [62] S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagstrom, P. Westbroek, K. De Clerck, The effect of temperature and humidity on electrospinning, J. Mater. Sci. 44(5)(2009)1357-1362. [63] Z.J. Zhang, Y.P. Wu, Z.H. Wang, X.Y. Zou, Y.B. Zhao, L. Sun, Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities, Mater. Sci. Eng. C 69(2016)462-469. [64] M.C. Han, H.W. He, B. Zhang, X.X. Wang, J. Zhang, M.H. You, S.Y. Yan, Y.Z. Long, Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning, Mater. Res. Express 4(7)(2017)075043. [65] X. Ma, W.Y. Wang, X.D. Qi, J.H. Yang, Y.Z. Lei, Y. Wang, Highly thermally conductive epoxy composites with anti-friction performance achieved by carbon nanofibers assisted graphene nanoplatelets assembly, Eur. Polym. J. 151(2021)110443. [66] L.C. Ma, Y.Y. Zhu, X.R. Li, C. Yang, P. Han, G.J. Song, The architecture of carbon fiber-TiO2 nanorods hybrid structure in supercritical water for reinforcing interfacial and impact properties of CF/epoxy composites, Polym. Test. 66(2018)213-220. [67] C.S. Li, Y.J. Zhang, H.Y. Gong, J.D. Zhang, L.F. Nie, Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol-gel method, Mater. Chem. Phys. 113(1)(2009)31-35. [68] J.J. Qin, C.G. Wang, Y.X. Wang, R.J. Lu, L.B. Zheng, X.H. Wang, Z.Q. Yao, Q. Gao, H.Z. Wei, Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength, Nanotechnology 29(39)(2018)395602. [69] I. Chikouche, A. Sahari, A. Zouaoui, S. Tingry, Enhancement of electric properties of polypyrrole by copper electrodeposition, Can. J. Chem. Eng. 93(6)(2015)1076-1080. [70] J. Tian, Q.L. Ma, W.S. Yu, D. Li, X.T. Dong, G.X. Liu, J.X. Wang, Preparation of Janus microfibers with magnetic and fluorescence functionality via conjugate electro-spinning, Mater. Des. 170(2019)107701. [71] L.M. Hu, J.T. Yan, C.L. Wang, B. Chai, J.F. Li, Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance, Chin. J. Catal. 40(3)(2019)458-469. [72] X.X. Luo, L.D. Liu, Y.C. Wang, J.Y. Li, A. Berbille, L.P. Zhu, Z.L. Wang, Tribovoltaic nanogenerators based on MXene-silicon heterojunctions for highly stable self-powered speed, displacement, tension, oscillation angle, and vibration sensors, Adv. Funct. Mater. 32(23)(2022)2113149. [73] Y.K. Zheng, H.T. Cao, Z. Zhou, X.C. Mei, L.K. Yu, X.J. Chen, G.H. He, Y. Zhao, D.Z. Wu, D.H. Sun, Concentrated multi-nozzle electrospinning, Fibres. Polym. 20(6)(2019)1180-1186. [74] W.L. Ji, H.Y. Wei, Y. Cui, Y.N. Wei, J.L. Bu, Z.Y. Feng, P. Wang, H. Li, L. Luo, Facile synthesis of porous forsterite nanofibres by direct electrospinning method based on the Kirkendall effect, Mater. Lett. 211(2018)319-322. [75] J.Y. Huang, Y. Hao, M. Zhao, W. Li, F.L. Huang, Q.F. Wei, All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors, ACS Appl. Mater. Interfaces 13(21)(2021)24774-24784. [76] N. Wang, X.X. Wang, K. Yan, W.Z. Song, Z.Y. Fan, M. Yu, Y.Z. Long, Anisotropic triboelectric nanogenerator based on ordered electrospinning, ACS Appl. Mater. Interfaces 12(41)(2020)46205-46211. [77] M.J. Zhi, A. Manivannan, F.K. Meng, N.Q. Wu, Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors, J. Power Sources 208(2012)345-353. [78] I. Martial, F. Balembois, J. Didierjean, P. Georges, Nd:YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond, Opt. Express 19(12)(2011)11667-11679. [79] M. Shneider, X.M. Sui, I. Greenfeld, H.D. Wagner, Electrospinning of epoxy fibers, Polymer 235(2021)124307. [80] Y. Kim, X. Wu, C. Lee, J.H. Oh, Characterization of PI/PVDF-TrFE composite nanofiber-based triboelectric nanogenerators depending on the type of the electrospinning system, ACS Appl. Mater. Interfaces 13(31)(2021)36967-36975. [81] M. Qin, X.J. Mou, W.H. Dong, J.X. Liu, H. Liu, Z. Dai, X.W. Huang, N. Wang, X. Yan, In situ electrospinning wound healing films composed of zein and clove essential oil, Macromol. Mater. Eng. 305(3)(2020)1900790. [82] S.D. Prasetyo, S. Hadi, Z. Arifin, The use of direct deposition electrospinning process in ZnO nanofiber fabrication as double layer (TiO2/ZnO) DSSC:variation of solution flow rate, IOP Conf. Ser.:Mater. Sci. Eng. 1034(1)(2021)012054. [83] W. Harmon, H.Y. Guo, D. Bamgboje, T.S. Hu, Z.L. Wang, Timing strategy for boosting energy extraction from triboelectric nanogenerators, Nano Energy 85(2021)105956. [84] D.H. Wang, H.W. He, X.X. Wang, Y. Yu, L.L. Jiang, Y. Lu, J. Yu, J. Zhang, Y.Z. Long, K.Q. Ruan, Grain size influence on the flexibility and luminous intensity of inorganic CaTiO3:Pr3+crystal nanofibers, Ceram. Int. 47(22)(2021)31329-31336. [85] X. Cui, Y.M. Zhang, G.W. Hu, L. Zhang, Y. Zhang, Dynamical charge transfer model for high surface charge density triboelectric nanogenerators, Nano Energy 70(2020)104513. [86] Z.Z. Guo, Z. Wu, Well-aligned polycaprolactone fiber by stable jet electrospinning, J. Phys.:Conf. Ser. 1906(1)(2021)012036. [87] M.J. Chen, Y.C. Zhang, X.Q. Chen, W.M. Yang, H.Y. Li, M. Yousefzadeh, S. Ramakrishna, Polymer melt differential electrospinning from a linear slot spinneret, J. Appl. Polym. Sci. 137(31)(2020)48922. [88] T. Wang, Y. Gao, T. Tang, H.Q. Bian, Z.M. Zhang, J.H. Xu, H. Xiao, X. Chu, Preparation of ordered TiO2 nanofibers/nanotubes by magnetic field assisted electrospinning and the study of their photocatalytic properties, Ceram. Int. 45(11)(2019)14404-14410. [89] D. Shin, J. Kim, J. Chang, Experimental study on jet impact speed in near-field electrospinning for precise patterning of nanofiber, J. Manuf. Process. 36(2018)231-237. [90] P. Fattahi, J.T. Dover, J.L. Brown, 3D near-field electrospinning of biomaterial microfibers with potential for blended microfiber-cell-loaded gel composite structures, Adv. Healthc. Mater. 6(19)(2017)10.1002/adhm.201700456. [91] X.R. Xie, D. Li, Y.J. Chen, Y.H. Shen, F. Yu, W. Wang, Z.C. Yuan, Y. Morsi, J.L. Wu, X.M. Mo, Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis, Adv. Healthc. Mater. 10(20)(2021) e2100918. [92] X.X. Wang, H.F. Xiang, C. Song, D.Y. Zhu, J.X. Sui, Q. Liu, Y.Z. Long, Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus, J. Hazard. Mater. 385(2020)121535. [93] W.Z. Song, H.J. Qiu, J. Zhang, M. Yu, S. Ramakrishna, Z.L. Wang, Y.Z. Long, Sliding mode direct current triboelectric nanogenerators, Nano Energy 90(2021)106531. [94] M. Wang, Y.G. Zhou, G.Z. Tan, Multivariate analysis of variance (MANOVA) on the microstructure gradient of biomimetic nanofiber scaffolds fabricated by cone electrospinning, J. Manuf. Process. 44(2019)55-61. [95] M. Miyauchi, J.J. Miao, T.J. Simmons, J.W. Lee, T.V. Doherty, J.S. Dordick, R.J. Linhardt, Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose, Biomacromolecules 11(9)(2010)2440-2445. [96] M.J. Zaitzeff, L.J. Groven, Crash precipitation of nanoscale β-phase PVDF particles, Mater. Lett. 330(2023)133221. [97] Q.J. Niu, L.W. Zeng, X.Y. Mu, J. Nie, G.P. Ma, Preparation and characterization of core-shell nanofibers by electrospinning combined with in situ UV photopolymerization, J. Ind. Eng. Chem. 34(2016)337-343. [98] T.C. Chao, T.W. Chiu, Y.S. Fu, Fabrication and characteristic of delafossite-type CuFeO2 nanofibers by electrospinning method, Ceram. Int. 44(2018) S80-S83. [99] F. Topuz, M.A. Abdulhamid, T. Holtzl, G. Szekely, Nanofiber engineering of microporous polyimides through electrospinning:influence of electrospinning parameters and salt addition, Mater. Des. 198(2021)109280. [100] A. Gomez, M. Gich, A. Carretero-Genevrier, T. Puig, X. Obradors, Piezo-generated charge mapping revealed through direct piezoelectric force microscopy, Nat. Commun. 8(2017)1113. [101] P. Shafer, F. Zavaliche, Y.H. Chu, P.L. Yang, M.P. Cruz, R. Ramesh, Planar electrode piezoelectric force microscopy to study electric polarization switching in BiFeO3, Appl. Phys. Lett. 90(20)(2007)202909. [102] J. Sifford, K.J. Walsh, S. Tong, G. Bao, G. Agarwal, Indirect magnetic force microscopy, Nanoscale Adv. 1(6)(2019)2348-2355. [103] F. Chianese, F. Chiarella, M. Barra, A. Carella, A. Cassinese, Scanning Kelvin Probe Microscopy investigation of the contact resistances and charge mobility in n-type PDIF-CN2 thin-film transistors, Org. Electron. 52(2018)206-212. [104] P. Vasandani, B. Gattu, Z.H. Mao, W.Y. Jia, M.G. Sun, Using a synchronous switch to enhance output performance of triboelectric nanogenerators, Nano Energy 43(2018)210-218. [105] S.M. Li, J. Wang, W.B. Peng, L. Lin, Y.L. Zi, S.H. Wang, G. Zhang, Z.L. Wang, Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators, Adv. Energy Mater. 7(13)(2017)1602832. [106] R. Lei, Y.X. Shi, Y.F. Ding, J.H. Nie, S.Y. Li, F. Wang, H. Zhai, X.Y. Chen, Z.L. Wang, Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy, Energy Environ. Sci. 13(7)(2020)2178-2190. [107] W.Z. Song, X.X. Wang, H.J. Qiu, Q. Liu, J. Zhang, Z.Y. Fan, M. Yu, S. Ramakrishna, H. Hu, Y.Z. Long, Sliding non-contact inductive nanogenerator, Nano Energy 63(2019)103878. [108] M. Al Mahadi Hasan, T.T. Zhang, H.T. Wu, Y. Yang, Water droplet-based nanogenerators, Adv. Energy Mater. 12(37)(2022)2201383. [109] M. Karimi, S. Seddighi, R. Mohammadpour, Nanostructured versus flat compact electrode for triboelectric nanogenerators at high humidity, Sci. Rep. 11(1)(2021)16191. [110] B.L. Cheng, Q. Xu, Y.Q. Ding, S. Bai, X.F. Jia, Y. Yu, J. Wen, Y. Qin, High performance temperature difference triboelectric nanogenerator, Nat. Commun. 12(1)(2021)4782. [111] Q. Jiang, C.S. Wu, Z.J. Wang, A.C. Wang, J.H. He, Z.L. Wang, H.N. Alshareef, MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit, Nano Energy 45(2018)266-272. [112] Z. Zhang, W.Z. Gong, Z.Q. Bai, D.F. Wang, Y.Y. Xu, Z.T. Li, J.S. Guo, L.S. Turng, Oxygen-rich polymers as highly effective positive tribomaterials for mechanical energy harvesting, ACS Nano 13(11)(2019)12787-12797. [113] M.F. Lin, J.Q. Xiong, J.X. Wang, K. Parida, P.S. Lee, Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications, Nano Energy 44(2018)248-255. [114] S. Cheon, H. Kang, H. Kim, Y. Son, J.Y. Lee, H.J. Shin, S.W. Kim, J.H. Cho, High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers, Adv. Funct. Mater. 28(2)(2018)1703778. [115] M.P. Arrieta, J. López, D. López, J.M. Kenny, L. Peponi, Biodegradable electrospun bionanocomposite fibers based on plasticized PLA-PHB blends reinforced with cellulose nanocrystals, Ind. Crops Prod. 93(2016)290-301. [116] J.H. Chen, X.L. Wei, B.C. Wang, R.N. Li, Y.G. Sun, Y.T. Peng, Z.Y. Wu, P. Wang, Z.L. Wang, Design optimization of soft-contact freestanding rotary triboelectric nanogenerator for high-output performance, Adv. Energy Mater. 11(44)(2021)2102106. [117] H.S. Kim, D.Y. Kim, J.E. Kim, J.H. Kim, D.S. Kong, G. Murillo, G.H. Lee, J.Y. Park, J.H. Jung, Ferroelectric-polymer-Enabled contactless electric power generation in triboelectric nanogenerators, Adv. Funct. Mater. 29(45)(2019)1905816. [118] Y. Jiang, K. Dong, X. Li, J. An, D.Q. Wu, X. Peng, J. Yi, C. Ning, R.W. Cheng, P.T. Yu, Z.L. Wang, Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors, Adv. Funct. Mater. 31(1)(2021)2005584. [119] M.J. Zhou, F. Xu, L.Y. Ma, Q.L. Luo, W.W. Ma, R.W. Wang, C.T. Lan, X. Pu, X.H. Qin, Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems, Nano Energy 104(2022)107885. [120] A. Babu, P. Malik, N. Das, D. Mandal, Surface potential tuned single active material comprised triboelectric nanogenerator for a high performance voice recognition sensor, Small 18(22)(2022) e2201331. [121] Y. Meng, J.Y. Yang, S.S. Liu, W. Xu, G.B. Chen, Z.H. Niu, M.Q. Wang, T. Deng, Y. Qin, M.D. Han, X.H. Li, Nano-fiber based self-powered flexible vibration sensor for rail fasteners tightness safety detection, Nano Energy 102(2022)107667. [122] F.J. Xing, Z.Q. Ou, X.B. Gao, B.D. Chen, Z.L. Wang, Harvesting electrical energy from high temperature environment by aerogel nano-covered triboelectric yarns, Adv. Funct. Mater. 32(49)(2022)2205275. [123] L. Ma, M. Zhou, R. Wu, A. Patil, H. Gong, S. Zhu, T. Wang, Y. Zhang, S. Shen, K. Dong, L. Yang, J. Wang, W. Guo, Z.L. Wang, Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing, ACS Nano 14(4)(2020)4716-4726. [124] W.Z. Song, X.X. Wang, H.J. Qiu, N. Wang, M. Yu, Z.Y. Fan, S. Ramakrishna, H. Hu, Y.Z. Long, Single electrode piezoelectric nanogenerator for intelligent passive daytime radiative cooling, Nano Energy 82(2021)105695. [125] X.X. Wang, N. Wang, H.J. Qiu, W.Z. Song, Q. Liu, Z.Y. Fan, M. Yu, S. Ramakrishna, Y.Z. Long, Anisotropic nanogenerator for anticounterfeiting and information encrypted transmission, Nano Energy 71(2020)104572. [126] S. Sardana, Z. Singh, A.K. Sharma, N. Kaur, P.K. Pati, A. Mahajan, Self-powered biocompatible humidity sensor based on an electrospun anisotropic triboelectric nanogenerator for non-invasive diagnostic applications, Sens. Actuat. B Chem. 371(2022)132507. [127] J. Tan, S.L. Sun, D.Y. Jiang, M.Y. Xu, X.Y. Chen, Y.C. Song, Z.L. Wang, Advances in triboelectric nanogenerator powered electrowetting-on-dielectric devices:mechanism, structures, and applications, Mater. Today 58(2022)201-220. [128] C. Li, Y. Yin, B. Wang, T. Zhou, J. Wang, J. Luo, W. Tang, R. Cao, Z. Yuan, N. Li, X. Du, C. Wang, S. Zhao, Y. Liu, Z.L. Wang, Self-powered electrospinning system driven by a triboelectric nanogenerator, ACS Nano 11(10)(2017)10439-10445. [129] Y. Han, J. Zou, Z. Li, W. Wang, Y. Jie, J. Ma, B. Tang, Q. Zhang, X. Cao, S. Xu, Z.L. Wang, Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries, ACS Nano 12(5)(2018)4835-4843. [130] L. Du, Y.C. Zhang, X.N. Li, J. Wang, M.J. Chen, X.H. Zuo, W.M. Yang, M. Yousefzadeh, S. Ramakrishana, H.Y. Li, High performance anti-smog window screens via electrospun nanofibers, J. Appl. Polym. Sci. 137(19)(2020)48657. [131] G.Q. Gu, C.B. Han, C.X. Lu, C. He, T. Jiang, Z.L. Gao, C.J. Li, Z.L. Wang, Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal, ACS Nano 11(6)(2017)6211-6217. [132] G. Liu, J. Nie, C. Han, T. Jiang, Z. Yang, Y. Pang, L. Xu, T. Guo, T. Bu, C. Zhang, Z.L. Wang, Self-powered electrostatic adsorption face mask based on a triboelectric nanogenerator, ACS Appl. Mater. Interfaces 10(8)(2018)7126-7133. [133] L. Lan, J. Xiong, D. Gao, Y. Li, J. Chen, J. Lv, J. Ping, Y. Ying, P.S. Lee, Breathable nanogenerators for an on-plant self-powered sustainable agriculture system, ACS Nano 15(3)(2021)5307-5315. [134] H.J. Qiu, W.Z. Song, X.X. Wang, J. Zhang, Z.Y. Fan, M. Yu, S. Ramakrishna, Y.Z. Long, A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator, Nano Energy 58(2019)536-542. [135] K. Yan, X. Li, X.X. Wang, M. Yu, Z.Y. Fan, S. Ramakrishna, H. Hu, Y.Z. Long, A non-toxic triboelectric nanogenerator for baby care applications, J. Mater. Chem. A 8(43)(2020)22745-22753. |
[1] | Liuyu Song, Haibo Li, Pengkai Wang, Yu Shang, Yue Yang, Zhaoyu Wu. MXene: Promising materials for magnesium-ion batteries[J]. 中国化学工程学报, 2024, 69(5): 199-211. |
[2] | Zhihao Yang, Li Chen, Jian Xue, Miaomiao Su, Fangdan Zhang, Liangxin Ding, Suqing Wang, Haihui Wang. Nano-alumina@cellulose-coated separators with the reinforced-concrete-like structure for high-safety lithium-ion batteries[J]. 中国化学工程学报, 2024, 68(4): 83-93. |
[3] | Kexin Zhang, Wenmin Zhang, Heng An, Zhe Huang, Yanzhen Wen, Xiangyu Jiao, Yongqiang Wen. Porous nanofibrous dressing enables mesenchymal stem cell spheroid formation and delivery to promote diabetic wound healing[J]. 中国化学工程学报, 2024, 68(4): 156-164. |
[4] | Yi Zhang, Di Liu, Zhaoli Wang, Junjian Yu, Yanyin Cheng, Wenjing Li, Zhe Wang, Hongzhe Ni, Yuchao Wang. Amino-functionalized UiO-66-doped mixed matrix membranes with high permeation performance and fouling resistance[J]. 中国化学工程学报, 2024, 67(3): 68-77. |
[5] | Li Wang, Ji-Xiang Guo, Rui-Ying Xiong, Chen-Hao Gao, Xiao-Jun Zhang, Dan Luo. In situ modification of heavy oil catalyzed by nanosized metal-organic framework at mild temperature and its mechanism[J]. 中国化学工程学报, 2024, 67(3): 166-173. |
[6] | Elham Ameri, Ali Aghababai Beni, Zahra Pournuroz Nodeh. Design and manufacture of emulsion liquid membrane based on various amine extractants for separation and extraction of succinic acid from fermentation broth[J]. 中国化学工程学报, 2023, 61(9): 173-179. |
[7] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[8] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[9] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[10] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[11] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[12] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions[J]. 中国化学工程学报, 2023, 59(7): 200-209. |
[13] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[14] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane[J]. 中国化学工程学报, 2023, 56(4): 33-45. |
[15] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||