[1] M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization:what is it and what can we expect from it?Energy Environ. Sci. 8(2015)2296-2319. [2] C.Y. Zhang, D. He, J.X. Ma, W.W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI)-problems and possibilities:a review, Water Res. 128(2018)314-330. [3] P. Przygocki, P. Ratajczak, F. Beguin, Quantification of the charge consuming phenomena under high-voltage hold of carbon/carbon supercapacitors by coupling operando and post-mortem analyses, Angew. Chem. Int. Ed. Engl. 58(50)(2019)17969-17977. [4] P.Y. Liu, T.T. Yan, L.Y. Shi, H.S. Park, X.C. Chen, Z.G. Zhao, D.S. Zhang, Graphene-based materials for capacitive deionization, J. Mater. Chem. A (5)(2017)13907-13943. [5] P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res. 42(10-11)(2008)2605-2617. [6] L. Wang, M. Wang, Z.H. Huang, T.X. Cui, X.C. Gui, F.Y. Kang, K.L. Wang, D.H. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem. 21(45)(2011)18295. [7] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl. Mater. Interfaces 4(3)(2012)1194-1199. [8] X.T. Liu, S. Shanbhag, S. Natesakhawat, J.F. Whitacre, M.S. Mauter, Performance loss of activated carbon electrodes in capacitive deionization:mechanisms and material property predictors, Environ. Sci. Technol. 54(23)(2020)15516-15526. [9] I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach, Long term stability of capacitive de-ionization processes for water desalination:the challenge of positive electrodes corrosion, Electrochim. Acta 106(2013)91-100. [10] B. Shapira, E. Avraham, D. Aurbach, Side reactions in capacitive deionization (CDI) processes:the role of oxygen reduction, Electrochim. Acta 220(2016)285-295. [11] P. Srimuk, M. Zeiger, N. Jäckel, A. Tolosa, B. Krüner, S. Fleischmann, I. Grobelsek, M. Aslan, B. Shvartsev, M.E. Suss, V. Presser, Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water, Electrochim. Acta 224(2017)314-328. [12] Y.J. Chen, C.F. Liu, C.C. Hsu, C.C. Hu, An integrated strategy for improving the desalination performances of activated carbon-based capacitive deionization systems, Electrochim. Acta 302(2019)277-285. [13] B. Li, T.Y. Zheng, S.J. Ran, P.H. Lee, B.J. Liu, S.T. Boles, Role of metastable-adsorbed charges in the stability degradation of carbon-based electrodes for capacitive deionization, Environ. Sci. Water Res. Technol. 4(8)(2018)1172-1180. [14] O. Sufiani, J. Elisadiki, R.L. Machunda, Y.A. Jande, Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications, J. Electroanal. Chem. 848(2019)113328. [15] S.C. Duan, Y.Q. Zhao, S. Jiang, Z.L. Yang, Y.J. Ju, C.J. Chen, L. Huang, F.J. Chen, Potential of zero charge regulating highly selective removal of nitrate anions through capacitive deionization, Chem. Eng. J. 442(2022)136287. [16] F.P. Zhao, S.X. Chen, H.R. Xiang, T.Y. Gao, D.Y. Wang, D. Wei, M. Sillanpaa, Y. Ke, C.J. Tang, Selectively capacitive recovery of rare earth elements from aqueous solution onto Lewis base sites of pyrrolic-N doped activated carbon electrodes, Carbon 197(2022)282-291. [17] K. Raidongia, A. Nag, K.P.S.S. Hembram, U.V. Waghmare, R. Datta, C.N.R. Rao, BCN:a graphene analogue with remarkable adsorptive properties, Chemistry 16(1)(2010)149-157. [18] Z.B. Ding, X.T. Xu, J.B. Li, Y.Q. Li, K. Wang, T. Lu, M.S.A. Hossain, M.A. Amin, S.H. Zhang, L.K. Pan, Y. Yamauchi, Nanoarchitectonics from 2D to 3D:MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization, Chem. Eng. J. 430(2022)133161. [19] X.Y. Wu, Z.Q. Shi, R. Tjandra, A.J. Cousins, S. Sy, A.P. Yu, R.M. Berry, K.C. Tam, Nitrogen-enriched porous carbon nanorods templated by cellulose nanocrystals as high performance supercapacitor electrodes, J. Mater. Chem. A 3(47)(2015)23768-23777. [20] X.Q. Wang, C.G. Liu, D. Neff, P.F. Fulvio, R.T. Mayes, A. Zhamu, Q. Fang, G.R. Chen, H.M. Meyer, B.Z. Jang, S. Dai, Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance, J. Mater. Chem. A 1(27)(2013)7920. [21] H. Jin, H.M. Zhang, H.X. Zhong, J.L. Zhang, Nitrogen-doped carbon xerogel:a novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells, Energy Environ. Sci. 4(9)(2011)3389. [22] B. Li, F. Dai, Q.F. Xiao, L. Yang, J.M. Shen, C.M. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy Environ. Sci. 9(1)(2016)102-106. [23] B. Qiu, C.T. Pan, W.J. Qian, Y.J. Peng, L.H. Qiu, F. Yan, Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors, J. Mater. Chem. A 1(21)(2013)6373. [24] X.T. Xu, S.H. Zhang, J. Tang, L.K. Pan, M. Eguchi, J. Na, Y. Yamauchi, Nitrogen-doped nanostructured carbons:a new material horizon for water desalination by capacitive deionization, EnergyChem 2(5)(2020)100043. [25] X.T. Xu, A.E. Allah, C. Wang, H.B. Tan, A.A. Farghali, M.H. Khedr, V. Malgras, T. Yang, Y. Yamauchi, Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination, Chem. Eng. J. 362(2019)887-896. [26] A.S. Yasin, J. Jeong, I.M.A. Mohamed, C.H. Park, C.S. Kim, Fabrication of N-doped&SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization, J. Alloys Compd. 729(2017)764-775. [27] Z. Li, Z.W. Xu, H.L. Wang, J. Ding, B. Zahiri, C.M.B. Holt, X.H. Tan, D. Mitlin, Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor, Energy Environ. Sci. 7(5)(2014)1708-1718. [28] Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor, Adv. Mater. Deerfield Beach Fla 24(41)(2012)5610-5616. [29] Z.R. Ismagilov, A.E. Shalagina, O. Podyacheva, A. Ischenko, L. Kibis, A. Boronin, Y.A. Chesalov, D.I. Kochubey, A. Romanenko, O. Anikeeva, T. Buryakov, E. Tkachev, Structure and electrical conductivity of nitrogen-doped carbon nanofibers, Carbon 47(2009)1922-1929. [30] Q.H. Ji, C.Z. Hu, H.J. Liu, J.H. Qu, Development of nitrogen-doped carbon for selective metal ion capture, Chem. Eng. J. 350(2018)608-615. [31] G.C. Tan, S.D. Lu, N. Xu, D.X. Gao, X.P. Zhu, Pseudocapacitive behaviors of polypyrrole grafted activated carbon and MnO2 electrodes to enable fast and efficient membrane-free capacitive deionization, Environ. Sci. Technol. 54(9)(2020)5843-5852. [32] P.M. Biesheuvel, H.V.M. Hamelers, M.E. Suss, Theory of water desalination by porous electrodes with immobile chemical charge, Colloids Interface Sci. Commun. 9(2015)1-5. [33] M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon 46(11)(2008)1475-1488. [34] T.T. Wu, G. Wang, F. Zhan, Q. Dong, Q.D. Ren, J.R. Wang, J.S. Qiu, Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization, Water Res. 93(2016)30-37. [35] X. Gao, A. Omosebi, J. Landon, K.L. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior, Energy Environ. Sci. 8(3)(2015)897-909. [36] J.H. Lee, W.S. Bae, J.H. Choi, Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process, Desalination 258(1-3)(2010)159-163. [37] D. He, C.E. Wong, W.W. Tang, P. Kovalsky, T.D. Waite, Faradaic reactions in water desalination by batch-mode capacitive deionization, Environ. Sci. Technol. Lett. 3(5)(2016)222-226. [38] Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer, D. Aurbach, Capacitive deionization of NaCl solutions at non-steady-state conditions:inversion functionality of the carbon electrodes, J. Phys. Chem. C 115(33)(2011)16567-16573. [39] C. Geng, Y.J. Gao, H. Ming, D.S. Duan, J. Meng, W.C. Gao, X.J. Shen, S.Y. Liu, J.Y. Lv, J.J. Xi, Z.Y. Zhao, Y.Y. Guan, J.Y. Liang, Continuous cycling of carbon-based capacitive deionization systems:an evaluation of the electrode performance and stability, J. Electroanal. Chem. 914(2022)116298. [40] J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes, J. Electrochem. Soc. 143(1)(1996)159-169. [41] M. Li, J.M. Xue, Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors, J. Phys. Chem. C 118(5)(2014)2507-2517. [42] T. Davies, Book review:infrared spectroscopy:fundamentals and applications, NIR Issues. 15(2004)12-12. [43] D.F. Deng, B. Chen, C. Zhao, M.A. Anderson, Y. Wang, Importance of anode/cathode mass loadings on capacitive deionization performance, J. Electrochem. Soc. 168(5)(2021)053503. [44] N.L. Liu, S. Dutta, R.R. Salunkhe, T. Ahamad, S.M. Alshehri, Y. Yamauchi, C.H. Hou, K.C. Wu, ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions, Sci. Rep. 6(2016)28847. [45] C.C. Hsu, Y.H. Tu, Y.H. Yang, J.A. Wang, C.C. Hu, Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization, Desalination 481(2020)114362. [46] L.J. Men, C.Y. Chen, A. Liu, S.Y. Yu, J.K. Zhou, Y.X. Xie, D.C. Ju, N-doped porous carbon-based capacitive deionization electrode materials loaded with activated carbon fiber for water desalination applications, J. Environ. Chem. Eng. 10(3)(2022)107943. [47] Z.Y. Sui, W. Liu, X.F. Xu, Y. Liu, Q.H. Tian, Nitrogen-doped porous carbons with high surface area for capacitive deionization, Diam. Relat. Mater. 104(2020)107758. [48] D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271)(2016)361-365. [49] T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai, Y. Harada, M. Saito, M. Oshima, M.I. Trioni, G.F. Tantardini, J. Nakamura, Atomic-scale characterization of nitrogen-doped graphite:effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms, Phys. Rev. B 86(3)(2012)035436. |