[1] P.D. Christofides, J.F. Davis, N.H. El-Farra, D. Clark, K.R.D. Harris, J.N. Gipson, Smart plant operations: Vision, progress and challenges, AlChE. J. 53 (11) (2007) 2734-2741. [2] S. Yin, S.X. Ding, X.C. Xie, H. Luo, A review on basic data-driven approaches for industrial process monitoring, IEEE Trans. Ind. Electron. 61 (11) (2014) 6418-6428. [3] S. Yin, Z.H. Huang, Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements, IEEE/ASME Trans. Mechatron. 20 (5) (2015) 2613-2620. [4] C. Nan, F. Khan, M.T. Iqbal, Real-time fault diagnosis using knowledge-based expert system, Process. Saf. Environ. Prot. 86 (1) (2008) 55-71. [5] P.M. Frank, Analytical and qualitative model-based fault diagnosis-A survey and some new results, Eur. J. Contr. 2 (1) (1996) 6-28. [6] D. Peng, Y. Xu, Q.X. Zhu, Study and application of case-based extension fault diagnosis for chemical process, Chin. J. Chem. Eng. 21 (4) (2013) 366-375. [7] X.Y. Chen, X.F. Yan, Fault diagnosis in chemical process based on self-organizing map integrated with fisher discriminant analysis, Chin. J. Chem. Eng. 21 (4) (2013) 382-387. [8] M. Alauddin, F. Khan, S. Imtiaz, S. Ahmed, A bibliometric review and analysis of data-driven fault detection and diagnosis methods for process systems, Ind. Eng. Chem. Res. 57 (32) (2018) 10719-10735. [9] N. Md Nor, C.R. Che Hassan, M.A. Hussain, A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems, Rev. Chem. Eng. 36 (4) (2020) 513-553. [10] J.V. Kresta, J.F. MacGregor, T.E. Marlin, Multivariate statistical monitoring of process operating performance, Can. J. Chem. Eng. 69 (1) (1991) 35-47. [11] L.H. Chiang, E.L. Russell, R.D. Braatz, Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis, Chemom. Intell. Lab. Syst. 50 (2) (2000) 243-252. [12] B. Xiao, Y.G. Li, B. Sun, C.H. Yang, K.K. Huang, H.Q. Zhu, Decentralized PCA modeling based on relevance and redundancy variable selection and its application to large-scale dynamic process monitoring, Process. Saf. Environ. Prot. 151 (2021) 85-100. [13] J.X. Zhang, W.J. Luo, Y.Y. Dai, Y.M. Yao, Cycle temporal algorithm-based multivariate statistical methods for fault diagnosis in chemical processes, Chin. J. Chem. Eng. 47 (2022) 54-70. [14] W.D. Tian, Y.J. Ren, Y.X. Dong, S.G. Wang, L.Z. Bu, Fault monitoring based on mutual information feature engineering modeling in chemical process, Chin. J. Chem. Eng. 27 (10) (2019) 2491-2497. [15] J.M. Lee, S.J. Qin, I.B. Lee, Fault detection of non-linear processes using kernel independent component analysis, Can. J. Chem. Eng. 85 (4) (2007) 526-536. [16] L.F. Cai, X.M. Tian, S. Chen, A process monitoring method based on noisy independent component analysis, Neurocomputing 127 (2014) 231-246. [17] C.H. Zhao, F.R. Gao, A nested-loop Fisher discriminant analysis algorithm, Chemom. Intell. Lab. Syst. 146 (2015) 396-406. [18] L.Y. Jiang, L. Xie, S.Q. Wang, Fault diagnosis for batch processes by improved multi-model fisher discriminant analysis, Chin. J. Chem. Eng. 14 (3) (2006) 343-348. [19] G. Yang, X.H. Gu, Fault diagnosis of complex chemical processes based on enhanced naive Bayesian method, IEEE Trans. Instrum. Meas. 69 (7) (2020) 4649-4658. [20] M. Onel, C.A. Kieslich, E.N. Pistikopoulos, A nonlinear support vector machine-based feature selection approach for fault detection and diagnosis: Application to the Tennessee Eastman process, AIChE J. 65 (3) (2019) 992-1005. [21] S. Mahadevan, S.L. Shah, Fault detection and diagnosis in process data using one-class support vector machines, J. Process. Contr. 19 (10) (2009) 1627-1639. [22] Y. Mao, Z. Xia, Z. Yin, Y.X. Sun, Z. Wan, Fault diagnosis based on fuzzy support vector machine with parameter tuning and feature selection, Chin. J. Chem. Eng. 15 (2) (2007) 233-239. [23] G.Z. Wang, J.C. Liu, Y. Li, Fault diagnosis using kNN reconstruction on MRI variables, J. Chemom. 29 (7) (2015) 399-410. [24] C. Li, R.V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, R.E. Vasquez, Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals, Mech. Syst. Signal Process. 76-77 (2016) 283-293. [25] W.K. Sun, A.R.C. Paiva, P. Xu, A. Sundaram, R.D. Braatz, Fault detection and identification using Bayesian recurrent neural networks, Comput. Chem. Eng. 141 (2020) 106991. [26] C.Y. Lou, X.S. Li, M.A. Atoui, Bayesian network based on an adaptive threshold scheme for fault detection and classification, Ind. Eng. Chem. Res. 59 (34) (2020) 15155-15164. [27] Y.Y. Dai, J.S. Zhao, Fault diagnosis of batch chemical processes using a dynamic time warping (DTW)-based artificial immune system, Ind. Eng. Chem. Res. 50 (8) (2011) 4534-4544. [28] L. Ming, J.S. Zhao, Feature selection for chemical process fault diagnosis by artificial immune systems, Chin. J. Chem. Eng. 26 (8) (2018) 1599-1604. [29] Z.C. Wei, X. Ji, L. Zhou, Y.G. Dang, Y.Y. Dai, A novel deep learning model based on target transformer for fault diagnosis of chemical process, Process. Saf. Environ. Prot. 167 (2022) 480-492. [30] L. Deng, Y. Zhang, Y.Y. Dai, X. Ji, L. Zhou, Y.G. Dang, Integrating feature optimization using a dynamic convolutional neural network for chemical process supervised fault classification, Process. Saf. Environ. Prot. 155 (2021) 473-485. [31] H. Wu, J.S. Zhao, Deep convolutional neural network model based chemical process fault diagnosis, Comput. Chem. Eng. 115 (2018) 185-197. [32] S.Y. Zhang, K.X. Bi, T. Qiu, Bidirectional recurrent neural network-based chemical process fault diagnosis, Ind. Eng. Chem. Res. 59 (2) (2020) 824-834. [33] A. Kopbayev, F. Khan, M. Yang, S.Z. Halim, Gas leakage detection using spatial and temporal neural network model, Process. Saf. Environ. Prot. 160 (2022) 968-975. [34] L. Zhang, Z.H. Song, Q.H. Zhang, Z.P. Peng, Generalized transformer in fault diagnosis of Tennessee Eastman process, Neural Comput. Appl. 34 (11) (2022) 8575-8585. [35] S.W. Xiong, L. Zhou, Y.Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56 (2023) 1-14. [36] P. Linardatos, V. Papastefanopoulos, S. Kotsiantis, Explainable AI: A review of machine learning interpretability methods, Entropy 23 (1) (2020) 18. [37] D.Y. Wu, J.S. Zhao, Process topology convolutional network model for chemical process fault diagnosis, Process. Saf. Environ. Prot. 150 (2021) 93-109. [38] D.Y. Wu, X.T. Bi, J.S. Zhao, ProTopormer: Toward understandable fault diagnosis combining process topology for chemical processes, Ind. Eng. Chem. Res. 62 (21) (2023) 8350-8361. [39] M. Vukovic, S. Thalmann, Causal discovery in manufacturing: A structured literature review, J. Manuf. Mater. Process. 6 (1) (2022) 10. [40] S. Shimizu, P.O. Hoyer, A. Hyvärinen, A. Kerminen, A linear non-gaussian acyclic model for causal discovery, J. Mach. Learn. Res. 7 (2006) 2003-2030. [41] P.K. Parida, T. Marwala, S. Chakraverty, Altered-LiNGAM (ALiNGAM) for solving nonlinear causal models when data is nonlinear and noisy, Commun. Nonlinear Sci. Numer. Simul. 52 (2017) 190-202. [42] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, In: International Conference on Learning Representations, Vancouver, BC, Canada, 2018. [43] J.B. Yu, Machine health prognostics using the Bayesian-inference-based probabilistic indication and high-order particle filtering framework, J. Sound Vib. 358 (2015) 97-110. [44] A. Bathelt, N.L. Ricker, M. Jelali, Revision of the Tennessee Eastman process model, IFAC-PapersOnLine 48 (8) (2015) 309-314. [45] L. Maaten, G.E. Hinton, Visualizing Data using t-SNE, J. Mach. Learn. Res. 9 (2008) 2579-2605. |