[1] F. Nocito, A. Dibenedetto, Atmospheric CO2 mitigation technologies: Carbon capture utilization and storage, Curr. Opin. Green Sustain. Chem. 21 (2020) 34-43. [2] P. Roy, A.K. Mohanty, M. Misra, Prospects of carbon capture, utilization and storage for mitigating climate change, Environ. Sci.: Adv. 2 (3) (2023) 409-423. [3] J.Y. Yan, Z.E. Zhang, Carbon capture, utilization and storage (CCUS), Appl. Energy 235 (2019) 1289-1299. [4] N. Perrin, R. Dubettier, F. Lockwood, J.P. Tranier, C. Bourhy-Weber, P. Terrien, Oxycombustion for coal power plants: Advantages, solutions and projects, Appl. Therm. Eng. 74 (2015) 75-82. [5] S.Y. Yuan, D.S. Ma, J.S. Li, T.Y. Zhou, Z.M. Ji, H.S. Han, Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization, Petrol. Explor. Dev. 49 (4) (2022) 955-962. [6] E. Adu, Y.D. Zhang, D.H. Liu, Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry, Can. J. Chem. Eng. 97 (5) (2019) 1048-1076. [7] J.F. Lyu, H.R. Yang, W. Ling, L. Nie, G.X. Yue, R.X. Li, Y. Chen, S.L. Wang, Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler, Front. Energy 13 (1) (2019) 114-119. [8] J.J. Li, H.R. Yang, Y.X. Wu, J.F. Lv, G.X. Yue, Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them, Environ. Sci. Technol. 47 (12) (2013) 6681-6687. [9] L.B. Duan, L. Li, D.Y. Liu, C.S. Zhao, Fundamental study on fuel-staged oxy-fuel fluidized bed combustion, Combust. Flame 206 (2019) 227-238. [10] R. Stanger, T. Wall, R. Sporl, M. Paneru, S. Grathwohl, M. Weidmann, G. Scheffknecht, D. McDonald, K. Myohanen, J. Ritvanen, S. Rahiala, T. Hyppanen, J. Mletzko, A. Kather, S. Santos, Oxyfuel combustion for CO2 capture in power plants, Int. J. Greenh. Gas Contr. 40 (2015) 55-125. [11] D.M. Gao, H.W. Chen, J.M. Yang, J.J. Gu, Influence factor analysis of circulating fluidized bed boiler oxy-fuel combustion and CO2 capture power generation unit operation energy consumption, Proc. CSEE 39 (5) (2019) 1387-1397. [12] S.H. Zhang, S.M. Zhang, J.J. Zhang, M. Miao, J.X. Wang, M. Zhang, H.R. Yang, Performance research on deep peak regulation with flue gas recirculation in a 330 MW subcritical CFB boiler, Clean Coal Technol. 27 (1) (2021) 291-298. [13] H. Zhou, K. Xu, Y.F. Hu, S.L. Wu, M.Y. Kou, Y.W. Luo, Numerical study on the influence of center gas supply device on gas-solid residence time distribution in COREX shaft furnace, Part. Sci. Technol. 39 (7) (2021) 887-895. [14] R. Johansson, B. Leckner, K. Andersson, F. Johnsson, Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model, Combust. Flame 158 (5) (2011) 893-901. [15] Z.W. Zhang, X.S. Li, L.Q. Zhang, C. Luo, B.W. Lu, Y.Q. Xu, J. Liu, A.L. Chen, C.G. Zheng, Effect of H2O/CO2 mixture on heat transfer characteristics of pulverized coal MILD-oxy combustion, Fuel Process. Technol. 184 (2019) 27-35. [16] C.B. Wang, W.J. Hou, C.M. Chen, Z.H. Huo, Heat transfer characteristic in oxy-fuel circulating fluidized bed boiler, Proc. CSEE 31 (20) (2011) 1-6. [17] J.F. Lu, J.S. Zhang, G.X. Yue, Q. Liu, L. Yu, X.D. Lin, W.J. Li, Y. Tang, T.Y. Luo, R.S. Ge, Method of calculation of heat transfer coefficient of the heater in a circulating fluidized bed furnace, Heat Trans. Asian Res. 31 (7) (2002) 540-550. [18] K.X. Gao, W.Q. Lu, X.M. Liu, J.P. Zhu, Y. Jin, J.F. Lyu, X.W. Ke, Design of a pure oxygen combustion CFB boiler for CCUS-EOR, Thermal Power Generation. 52 (2023) 104-111. https://doi.org/10.19666/j.rlfd.202305065. [19] Y. Chen, X.F. Lu, W.Q. Zhang, Q.H. Wang, S.D. Chen, X.C. Fan, J.B. Li, An experimental study on the hydrodynamic performance of the water-wall system of a 600 MW supercritical CFB boiler, Appl. Therm. Eng. 141 (2018) 280-287. [20] R.F. Ding, J.J. Dong, M. Zhang, H.R. Yang, J.F. Lv, Field test of coal type adaptability on a 300 MW CFB boiler, Powder Technol. 274 (2015) 180-185. [21] G.L. Qi, S.S. Zhang, X.M. Liu, J. Guan, Y.Q. Chang, Z.W. Wang, Combustion adjustment test of circulating fluidized bed boiler, Appl. Therm. Eng. 124 (2017) 1505-1511. [22] R.X. Cai, X.W. Ke, R.C. Ge, H.R. Yang, J.F. Lyu, M. Zhang, J.C. Zhang, S.L. Wang, Y. Chen, The In-situ desulfurization with ultra-fine limestone for circulating fluidized bed boilers, Proc. CSEE 38 (10) (2018) 3042-3048, 3155. [23] X.W. Ke, R.X Cai, H.R. Yang, M. Zhang, H. Zhang, Y.X. Wu, J.F. Lyu, Q. Liu, J.F. Li, Formation and Ultra-low Emission of NOx for Circulating Fluidized Bed Combustion, Proceedings of the CSEE. 38 (2018) 390-396+669. https://doi.org/10.13334/j.0258-8013.pcsee.171415. [24] R.X. Cai, H. Zhang, M. Zhang, H.R. Yang, J.F. Lyu, G.X. Yue, Development and application of the design principle of fluidization state specification in CFB coal combustion, Fuel Process. Technol. 174 (2018) 41-52. [25] D.R. Bai, Y. Jin, Z.Q. Yu, Flow regimes in circulating fluidized beds, Chem. Eng. Technol. 16 (5) (1993) 307-313. [26] W.K.H. Ariyaratne, C. Ratnayake, M.C. Melaaen, Application of the MP-PIC method for predicting pneumatic conveying characteristics of dilute phase flows, Powder Technol. 310 (2017) 318-328. [27] Q.G. Wang, H.R. Yang, P.N. Wang, J.F. Lu, Q. Liu, H. Zhang, L.B. Wei, M. Zhang, Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, part I-determination of modeling parameters, Powder Technol. 253 (2014) 814-821. [28] Q.G. Wang, H.R. Yang, P.N. Wang, J.F. Lu, Q. Liu, H. Zhang, L.B. Wei, M. Zhang, Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal Part II-investigation of solids circulation, Powder Technol. 253 (2014) 822-828. [29] Y. Jiang, G.Z. Qiu, H.G. Wang, Modelling and experimental investigation of the full-loop gas-solid flow in a circulating fluidized bed with six cyclone separators, Chem. Eng. Sci. 109 (2014) 85-97. [30] M. Upadhyay, H.C. Park, J.G. Hwang, H.S. Choi, H.N. Jang, Y.C. Seo, Computational particle-fluid dynamics simulation of gas-solid flow in a circulating fluidized bed with air or O2/CO2 as fluidizing gas, Powder Technol. 318 (2017) 350-362. [31] D.M. Snider, An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, J. Comput. Phys. 170 (2) (2001) 523-549. [32] D. Snider, S. Banerjee, Heterogeneous gas chemistry in the CPFD Eulerian-Lagrangian numerical scheme (ozone decomposition), Powder Technol. 199 (1) (2010) 100-106. [33] G.X. Yue, R.X. Cai, J.F. Lu, H. Zhang, From a CFB reactor to a CFB boiler-The review of R&D progress of CFB coal combustion technology in China, Powder Technol. 316 (2017) 18-28. |