[1] P. Kanta Rao, K.S. Rama Rao, A. Hari Padmasri, Transformation of chlorofluorocarbons through catalytic hydrodehalogenation, CATTECH 7 (6) (2003) 218-225. [2] C. Li, H.M. Guo, N. Zhang, Y. Jin, K. Han, J.F. Yuan, Z.C. Pan, M.W. Pan, Multifunctional waterborne polyurethane microreactor-based approach to fluorocarbon composite latex coatings with double self-healing and excellent synergistic performances, Nanomaterials 12 (23) (2022) 4216. [3] Y. Li, J.H. Wen, T.Y. Wu, C. Cao, X.Y. Meng, H.M. Ye, Mechanical properties and microstructure of polychlorotrifluoroethylene toughened by polyamide 11 based on intermolecular interaction, J. Appl. Polym. Sci. 139 (42) (2022) e53028. [4] F. Boschet, B. Ameduri, (Co)polymers of chlorotrifluoroethylene: synthesis, properties, and applications, Chem. Rev. 114 (2) (2014) 927-980. [5] B. Ameduri, Fluoropolymers: the right material for the right applications, Chemistry 24 (71) (2018) 18830-18841. [6] W.C. Han, H.Y. Du, S.Z. Li, H.L. Kang, Q.H. Fang, Mechanical properties and creep behavior of fluoroelastomer under hydrochloric acid environments, Polym. Bull. 77 (11) (2020) 5967-5983. [7] J. Zhao, T. Zhou, J.H. Zhang, H.M. Chen, C.Y. Yuan, W.D. Zhang, A.M. Zhang, Synthesis of a waterborne polyurethane-fluorinated emulsion and its hydrophobic properties of coating films, Ind. Eng. Chem. Res. 53 (49) (2014) 19257-19264. [8] Y.H. Yin, Y. Muhammad, X. Zeng, J. Yang, J. Li, S. Yang, Z.X. Zhao, S. Subhan, Synthesis and properties of octadecylamine-graphene oxide modified highly hydrophobic waterborne polyurethane emulsion, Prog. Org. Coat. 125 (2018) 234-241. [9] E. Belmore, W. Ewalt, B. Wojcik, Production of polyperfluorovinyl chloride, Ind. Eng. Chem. 39 (3) (1947) 338-342. [10] V.G. Nenajdenko, V.M. Muzalevskiy, A.V. Shastin, Polyfluorinated ethanes as versatile fluorinated C2-building blocks for organic synthesis, Chem. Rev. 115 (2) (2015) 973-1050. [11] P.L. Cabot, M. Centelles, L. Segarra, J. Casado, Electrosynthesis of trifluoroethene and difluoroethene from 1, 1, 2-trichloro-1, 2, 2-trifluoroethane, J. Electroanal. Chem. 435 (1-2) (1997) 255-258. [12] A. Savall, R. Abdelhedi, S. Dalbera, M.L. Bouguerra, Reduction electrochimique du trichloro-1, 1, 2-trifluoroethane: Effet catalytique de l’ion ammonium, Electrochim. Acta 35 (11-12) (1990) 1727-1737. [13] J.T. Rucker, D.B. Stormon, Process for the production of chlorotrifluorothylene by passing a mixture of trichlorotrifluoroethane and hydrogen through an unobstructed iron tube, Google Patents, 1956. [14] R. Ohnishi, I. Suzuki, M. Ichikawa, Bi-Pd catalyst for selective hydrodechlorination of 1, 1, 2-trichlorotrifluoroethane to trifluoroethene, a key intermediate to 1, 1, 1, 2-tetrafluoroethane as a CFC replacement for refrigeration, Chem. Lett. 20 (5) (1991) 841-844. [15] H. Bozorgzadeh, E. Kemnitz, M. Nickkho-Amiry, T. Skapin, J.M. Winfield, Conversion of 1, 1, 2-trichlorotrifluoroethane to 1, 1, 1-trichlorotrifluoroethane and 1, 1-dichlorotetrafluoroethane over aluminium-based catalysts, J. Fluor. Chem. 107 (1) (2001) 45-52. [16] S. Okazaki, H. Habutsu, Hydrodechlorination of CCl2FCClF2 over NiO-Cr2O3 catalysts, J. Fluor. Chem. 57 (1-3) (1992) 191-201. [17] R. Ohnishi, W.L. Wang, M. Ichikawa, Selective hydrodechlorination of CFC-113 on Bi- and Tl-modified palladium catalysts, Appl. Catal. A Gen. 113 (1) (1994) 29-41. [18] S.C. Shekar, A. Venugopal, K.R. Rao, P.S. Prasad, R. Srinivas, P.K. Rao, Hydrodechlorination of 1, 1, 2-Trichloro-1, 2, 2 trifluoroethane (CFC-113) over Pd supported on modified Al2O3, Stud. Surf. Sci. Catal., 113(1998)391-397. [19] M. Bonarowska, M. Wojciechowska, M. Zielinski, A. Kiderys, M. Zielinski, P. Winiarek, Z. Karpinski, Hydrodechlorination of tetrachloromethane over palladium catalysts supported on mixed MgF2-MgO carriers, Molecules 21 (12) (2016) 1620. [20] M. Cobo, J. Becerra, M. Castelblanco, B. Cifuentes, J.A. Conesa, Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2-propanol/methanol/water system on ceria-supported Pd and Rh catalysts, J. Environ. Manage. 158 (2015) 1-10. [21] Y.X. Han, J.Y. Sun, H.Y. Fu, X.L. Qu, H.Q. Wan, Z.Y. Xu, S.R. Zheng, Highly selective hydrodechlorination of 1, 2-dichloroethane to ethylene over Ag-Pd/ZrO2 catalysts with trace Pd, Appl. Catal. A Gen. 519 (2016) 1-6. [22] K.N. Heck, M.O. Nutt, P. Alvarez, M.S. Wong, Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination, J. Catal. 267 (2) (2009) 97-104. [23] C.D. Thompson, R.M. Rioux, N. Chen, F.H. Ribeiro, Turnover rate, reaction order, and elementary steps for the hydrodechlorination of chlorofluorocarbon compounds on palladium catalysts, J. Phys. Chem. B 104 (14) (2000) 3067-3077. [24] C. Ruiz-Garcia, F. Heras, L. Calvo, N. Alonso-Morales, J.J. Rodriguez, M.A. Gilarranz, Improving the activity in hydrodechlorination of Pd/C catalysts by nitrogen doping of activated carbon supports, J. Environ. Chem. Eng. 8 (2) (2020) 103689. [25] M. Martin-Martinez, L.M. Gomez-Sainero, Progress in catalytic hydrodechlorination, Catalysts 11 (2) (2021) 272. [26] S.H. Guo, J.H. Peng, W. Li, K.B. Yang, L.B. Zhang, S.M. Zhang, H.Y. Xia, Effects of CO2 activation on porous structures of coconut shell-based activated carbons, Appl. Surf. Sci. 255 (20) (2009) 8443-8449. [27] W. Li, K.B. Yang, J.H. Peng, L.B. Zhang, S.H. Guo, H.Y. Xia, Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars, Ind. Crops Prod. 28 (2) (2008) 190-198. [28] L. Wei, S.P. Cui, H.X. Guo, X.Y. Ma, Y.Q. Wan, S.S. Yu, The mechanism of the deactivation of MnOx/TiO2 catalyst for low-temperature SCR of NO, Appl. Surf. Sci. 483 (2019) 391-398. [29] O.S.G.P. Soares, J.J.M. Orfao, M.F.R. Pereira, Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition, Appl. Catal. B Environ. 91 (1-2) (2009) 441-448. [30] T. Mori, T. Yasuoka, Y. Morikawa, Hydrodechlorination of 1, 1, 2-trichloro-1, 2, 2-trifluoroethane (CFC-113) over supported ruthenium and other noble metal catalysts, Catal. Today 88 (3-4) (2004) 111-120. [31] S.L. Yao, C.H. Yang, Y.S. Tan, Y.Z. Han, Deactivation of activated carbon supported nickel-palladium catalyst for vapor phase carbonylation of methanol, J. Fuel Chem. Technol. 34 (6) (2006) 706-711. [32] B. Zou, X.S. Chen, J.J. Xia, C.S. Zhou, Alkaline ionic liquid modified Pd/C catalyst as an efficient catalyst for oxidation of 5-hydroxymethylfurfural, J. Chem. 2018 (2018) 2018743. [33] V.V. Chesnokov, A.S. Chichkan, Z.R. Ismagilov, Properties of Pd-Ag/C catalysts in the reaction of selective hydrogenation of acetylene, Kinet. Catal. 58 (5) (2017) 649-654. [34] S. Agarwal, S.R. Al-Abed, D.D. Dionysiou, Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs, Environ. Sci. Technol. 41 (10) (2007) 3722-3727. [35] M. Salhi, K. Rida, A new tribasic copper chloride adsorbent’s synthesis, characterization and analysis of its regeneration using a Fenton-like procedure, Mater. Sci. Eng. B 292 (2023) 116439. [36] X.X. Liu, L. Xu, Y.L. Huang, H. Cheng, H.J. Seo, Paratacamite phase stability and improved optical properties of Cu2(OH)3Cl crystal via Ni-doping, Mater. Des. 121 (2017) 194-201. [37] W. Zhong, G.Q. Zhong, J.H. He, Preparation of tribasic copper chloride nanopowders by solid state reaction at room temperature, J. Synth. Cryst. 39 (6) (2010) 1581-1585. [38] O.S.G.P. Soares, J.J.M. Orfao, J. Ruiz-Martinez, J. Silvestre-Albero, A. Sepulveda-Escribano, M.F.R. Pereira, Pd-Cu/AC and Pt-Cu/AC catalysts for nitrate reduction with hydrogen: influence of calcination and reduction temperatures, Chem. Eng. J. 165 (1) (2010) 78-88. [39] J.W. Zhang, G.P. Lu, C. Cai, Regio- and stereoselective hydrosilylation of alkynes catalyzed by SiO2 supported Pd-Cu bimetallic nanoparticles, Green Chem. 19 (11) (2017) 2535-2540. [40] R. Ciesielski, O. Shtyka, M. Zakrzewski, J. Kubicki, W. Maniukiewicz, A. Kedziora, T.P. Maniecki, Mechanistic studies of methanol synthesis reaction over Cu and Pd-Cu catalysts, Kinet. Catal. 61 (4) (2020) 623-630. [41] S.S. Mu, J. Rafaelsen, Quantification and precision in particle analysis using SEM and EDS, Microsc. Microanal. 25 (S2) (2019) 708-709. [42] M. Cano, F. Guárin, B. Aristizáabal, A.L. Villa, L.M. González, Catalytic activity and stability of Pd/Co catalysts in simultaneous selective catalytic reduction of NOx with methane and oxidation of o-dichlorobenzene, Catal. Today 296 (2017) 105-117. [43] Q. Zhao, L.J. Liu, R. Liu, L.F. Zhu, PdCu nanoalloy immobilized in ZIF-derived N-doped carbon/graphene nanosheets: Alloying effect on catalysis, Chem. Eng. J. 353 (2018) 311-318. |