[1] A. Giannadakis, A. Naxakis, A. Romeos, K. Perrakis, T. Panidis, An experimental study on a coaxial flow with inner swirl: vortex evolution and flow field mixing attributes, Aerosp. Sci. Technol. 94 (2019) 105373. [2] K. Wawrzak, A. Boguslawski, Self-excited oscillations in variable density counter-current round jets, Int. J. Heat Fluid Flow 103 (2023) 109178. [3] M.F. Zhou, H. Jiang, Y.J. Hu, Z.M. Lu, H.B. Jiang, C.Z. Li, Analyzing of mixing performance determination factors for the structure of radial multiple jets-in-crossflow, Chin. J. Chem. Eng. 27 (11) (2019) 2626-2634. [4] Y. Liu, R.O. Fox, CFD predictions for chemical processing in a confined impinging-jets reactor, AIChE J. 52 (2) (2006) 731-744. [5] B. Wu, Y. Fang, C.C. Zhao, Y.H. Wang, P.C. Luo, Experimental study and numerical simulation of barium sulfate precipitation process in a continuous multi-orifice-impinging transverse jet reactor, Powder Technol. 321 (2017) 180-189. [6] C.A. da Rosa, R.D. Braatz, Multiscale modeling and simulation of macromixing, micromixing, and crystal size distribution in radial mixers/crystallizers, Ind. Eng. Chem. Res. 57 (15) (2018) 5433-5441. [7] Y.D. Li, Z.F. Nie, Y.Q. Hou, G. Xie, L. Tian, Parametric study of flow field and mixing characteristics of TiCl4 jet injected into O2 crossflow in oxidation reactor for titanium pigment production by chloride process, Int. J. Therm. Sci. 156 (2020) 106460. [8] X.Y. Yang, W.J. Fan, R.C. Zhang, Experimental investigations on aviation kerosene multi-jets in high temperature and low pressure air crossflow, Fuel 324 (2022) 124828. [9] L. Gevorkyan, T. Shoji, D.R. Getsinger, O.I. Smith, A.R. Karagozian, Transverse jet mixing characteristics, J. Fluid Mech. 790 (2016) 237-274. [10] L.W. Zhang, V. Yang, Flow dynamics and mixing of a transverse jet in crossflow: part I: steady crossflow, J. Eng. Gas Turb. Power 139 (8) (2017) 082601. [11] K. Mahesh, The interaction of jets with crossflow, Annu. Rev. Fluid Mech. 45 (2013) 379-407. [12] P.C. Luo, Y. Fang, B. Wu, H. Wu, Turbulent characteristics and design of transverse jet mixers with multiple orifices, Ind. Eng. Chem. Res. 55 (32) (2016) 8858-8868. [13] Z.W. Li, W.X. Huai, Z.D. Qian, Study on the flow field and concentration characteristics of the multiple tandem jets in crossflow, Sci. China Technol. Sci. 55 (10) (2012) 2778-2788. [14] M.T. Kandakure, V.C. Patkar, A.W. Patwardhan, J.A. Patwardhan, Mixing with jets in cross-flow, Ind. Eng. Chem. Res. 48 (2009) 6820-6829. [15] D.J. Clayton, W.P. Jones, Large eddy simulation of impinging jets in a confined flow, In: W. Rodi, M. Mulas (Eds.), Engineering Turbulence Modelling and Experiments 6, Elsevier, Amsterdam, 2005, pp. 247-256. [16] L.J. Forney, N. Nafia, H.X. Vo, Optimum jet mixing in a tubular reactor, AIChE J. 42 (11) (1996) 3113-3122. [17] D. Liscinsky, B. True, J. Holdeman, Experimental investigation of crossflow jet mixing in a rectangular duct, Proceedings of the 29th Joint Propulsion Conference and Exhibit. Monterey, CA, USA. Reston, Virigina: AIAA, (1993), pp.1993-2037. [18] P.C. Luo, H.Y. Jia, C.X. Xin, G.Z. Xiang, Z. Jiao, H. Wu, An experimental study of liquid mixing in a multi-orifice-impinging transverse jet mixer using PLIF, Chem. Eng. J. 228 (2013) 554-564. [19] E.V. Kartaev, V.A. Emelkin, M.G. Ktalkherman, S.M. Aulchenko, S.P. Vashenko, V.I. Kuzmin, Formation of counter flow jet resulting from impingement of multiple jets radially injected in a crossflow, Exp. Therm. Fluid Sci. 68 (2015) 310-321. [20] P.C. Luo, Y.C. Tai, Y. Fang, H. Wu, Mixing times in single and multi-orifice-impinging transverse (MOIT) jet mixers with crossflow, Chin. J. Chem. Eng. 24 (7) (2016) 825-831. [21] D.B. Mosiria, R.F. Huang, C.M. Hsu, Characteristics of backward-inclined non-premixed jet flames in crossflow, Exp. Therm. Fluid Sci. 98 (2018) 429-444. [22] Z.W. Li, Y.X. Yuan, J. Yao, V.L. Varsegov, P.H. Duan, L. Zhao, Study of circular transverse jet-a new method for high-efficiency mixing and combustion in crossflow, Int. Commun. Heat Mass Transf. 123 (2021) 105207. [23] J.R. Bourne, Mixing and the selectivity of chemical reactions, Org. Process Res. Dev. 7 (4) (2003) 471-508. [24] Y. Ouyang, Y. Xiang, X.Y. Gao, H.K. Zou, G.W. Chu, R.K. Agarwal, J.F. Chen, Micromixing efficiency optimization of the premixer of a rotating packed bed by CFD, Chem. Eng. Process. Process. Intensif. 142 (2019) 107543. [25] Y. Ouyang, Y. Xiang, H.K. Zou, G.W. Chu, J.F. Chen, Flow characteristics and micromixing modeling in a microporous tube-in-tube microchannel reactor by CFD, Chem. Eng. J. 321 (2017) 533-545. [26] J.Z. Luo, Y. Luo, G.W. Chu, M. Arowo, Y. Xiang, B.C. Sun, J.F. Chen, Micromixing efficiency of a novel helical tube reactor: CFD prediction and experimental characterization, Chem. Eng. Sci. 155 (2016) 386-396. [27] Q.A. Wang, J.X. Wang, W. Yu, L. Shao, G.Z. Chen, J.F. Chen, Investigation of micromixing efficiency in a novel high-throughput microporous tube-in-tube microchannel reactor, Ind. Eng. Chem. Res. 48 (10) (2009) 5004-5009. [28] N.C. Jacobsen, O. Hinrichsen, Micromixing efficiency of a spinning disk reactor, Ind. Eng. Chem. Res. 51 (36) (2012) 11643-11652. [29] J.Z. Luo, G.W. Chu, Y. Luo, M. Arowo, B.C. Sun, J.F. Chen, Regulating the micromixing efficiency of a novel helical tube reactor by premixing behavior optimization, AIChE J. 63 (7) (2017) 2876-2887. [30] L. Liu, X.G. Yang, Y.Q. Guo, B. Li, L.P. Wang, Reactive mixing performance for a nanoparticle precipitation in a swirling vortex flow reactor, Ultrason. Sonochem. 94 (2023) 106332. [31] B.Q. Liu, N. Sun, Z.J. Jin, Y.K. Zhang, B. Sunden, Numerical investigation and estimating correlation of micromixing performance of coaxial mixers, Ind. Eng. Chem. Res. 58 (49) (2019) 22376-22388. [32] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-determination of micromixing time by a simple mixing model, Chem. Eng. Sci. 51 (23) (1996) 5187-5192. [33] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-experimental approach, Chem. Eng. Sci. 51 (22) (1996) 5053-5064. [34] D.A. Palmer, R.W. Ramette, R.E. Mesmer, Triiodide ion formation equilibrium and activity coefficients in aqueous solution, J. Solut. Chem. 13 (9) (1984) 673-683. [35] J.H. Guo, Y.D. Liu, G.X. Shan, H.J. Li, W. Li, H.Y. Qin, J.K. Xia, J. Wu, J.L. Zhang, The structure-effect relationship between inline high shear mixers and micromixing: experiment and CFD simulation, Chem. Eng. Sci. 272 (2023) 118605. [36] P.Y. Wang, The model constant A of the eddy dissipation model, Prog. Comput. Fluid Dyn. Int. J. 16 (2) (2016) 118-125. [37] E. Gavi, D.L. Marchisio, A.A. Barresi, CFD modelling and scale-up of confined impinging jet reactors, Chem. Eng. Sci. 62 (8) (2007) 2228-2241. |