[1] L.M. Cheng, J.Q. Ji, Y.J. Wei, Q.H. Wang, M.X. Fang, Z.Y. Luo, M.J. Ni, K.F. Cen, A note on large-size supercritical CFB technology development, Powder Technol. 363 (2020) 398-407. [2] K. El Sheikh, M.J.H. Khan, M. Diana Hamid, S. Shrestha, B.S. Ali, G.A. Ryabov, L.A. Dolgushin, M.A. Hussain, T.V. Bukharkina, E.A. Gorelova, Advances in reduction of NO and N2O emission formation in an oxy-fired fluidized bed boiler, Chin. J. Chem. Eng. 27 (2) (2019) 426-443. [3] J.Q. Ji, L.M. Cheng, Y.J. Wei, J.F. Wang, X.Y. Gao, M.X. Fang, Q.H. Wang, Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model, Particuology 49 (2020) 77-87. [4] H.P. Liu, H.W. Sun, Y. Bi, C.X. Jia, L. Zhang, Y.L. Li, H. Qin, Q. Wang, Effect of secondary air on NO emission in a 440 t/h circulating fluidized bed boiler based on CPFD method, Particuology 83 (2023) 18-31. [5] J. Yan, X. Zheng, X.F. Lu, Z. Liu, X.C. Fan, Enhanced combustion behavior and NOx reduction performance in a CFB combustor by combining flue gas recirculation with air-staging: Effect of injection position, J. Energy Inst. 96 (2021) 294-309. [6] X.W. Ke, M. Engblom, H.R. Yang, A. Brink, J.F. Lyu, M. Zhang, B. Zhao, Prediction and minimization of NOx emission in a circulating fluidized bed combustor: A comprehensive mathematical model for CFB combustion, Fuel 309 (2022) 122133. [7] J.H. Chen, X.F. Lu, H.Z. Liu, J. Liu, The effect of solid concentration on the secondary air-jetting penetration in a bubbling fluidized bed, Powder Technol. 185 (2) (2008) 164-169. [8] J.H. Chen, X.F. Lu, H.Z. Liu, J. Liu, Experimental study and numerical simulation of secondary air’s jet length in circulating fluidized beds, J. Power Eng. 27 (6) (2007) 895-898. [9] C.S. Hu, K. Luo, M.M. Zhou, J.J. Lin, D.L. Kong, J.R. Fan, Influences of secondary gas injection pattern on fluidized bed combustion process: A CFD-DEM study, Fuel 268 (2020) 117314. [10] T.W. Li, K. Pougatch, M. Salcudean, D. Grecov, Mixing of secondary gas injection in a bubbling fluidized bed, Chem. Eng. Res. Des. 87 (11) (2009) 1451-1465. [11] Z.Y. Wang, S.Z. Sun, X.Y. Meng, S.H. Wu, Y.F. Tan, Effects of coarse particle addition on solids distribution of CFB with air-staging, 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China, 2011, pp. 1190-1193. [12] Z.Y. Wang, Y.F. Tan, N.B. Zhao, S.Z. Sun, S.H. Wu, Experimental study on the penetration model of secondary air injection in CFB, 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 2011, pp. 1-4. [13] Z.Y. Wang, S.Z. Sun, H. Chen, S.H. Wu, Y.F. Tan, Experimental research on the corner secondary air injection of square circulating fluidized bed, 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 2010, pp. 1-4. [14] J.H. Yang, H.R. Yang, G.X. Yue, Experimental study on secondary air jet penetration in circulating fluidized bed, J. Power Eng. 28 (4) (2008) 509-513. [15] W.J. Zheng, M. Zhang, Y. Zhang, J.F. Lyu, H.R. Yang, The effect of the secondary air injection on the gas-solid flow characteristics in the circulating fluidized bed, Chem. Eng. Res. Des. 141 (2019) 220-228. [16] D.H. Jiang, H.X. Zhang, X.F. Wang, Z.P. Zhu, X.Y. Cao, Influence of air staging on the operation characteristics of the CFB system, J. Therm. Sci. 32 (5) (2023) 1889-1898. [17] J. Werther, E.U. Hartge, L. Ratschow, R. Wischnewski, Simulation-supported measurements in large circulating fluidized bed combustors, Particuology 7 (4) (2009) 324-331. [18] C.H. Zheng, L.M. Cheng, X.L. Zhou, Q.S. Xu, Q.H. Wang, M.X. Fang, Z.Y. Luo, Numerical simulation of secondary air penetration depth in a 300 MW single-furnace circulating fluidized bed boiler, J. Power Eng. 29 (9) (2009) 801-805, 812. [19] X. Zheng, J. Yan, J.P. Wang, X.F. Lu, Numerical study of the influence of secondary air uniformity on jet penetration and gas-solid diffusion characteristics in a large-scale CFB boiler, Energies 14 (18) (2021) 5679. [20] C.K. Adams, Gas mixing in fast fluidised beds, Proceedings of the Second International Conference on Circulating Fluidized Beds, Compiegne, France, 1988, pp. 299-306. [21] G. Amos, M.J. Rhodes, H. Mineo, Gas mixing in gas-solids risers, Chem. Eng. Sci. 48 (5) (1993) 943-949. [22] R.J. Dry, C.C. White, Gas residence-time characteristics in a high-velocity circulating fluidised bed of FCC catalyst, Powder Technol. 58 (1) (1989) 17-23. [23] A. Nautiyal, C.S. Chyang, P.W. Li, H.Y. Hou, Horizontal gas mixing in rectangular fluidized bed: A novel method for gas dispersion coefficients in various conditions and distributor designs, Chin. J. Chem. Eng. 25 (7) (2017) 848-861. [24] J. Sterneus, F. Johnsson, B. Leckner, Characteristics of gas mixing in a circulating fluidised bed, Powder Technol. 126 (1) (2002) 28-41. [25] J. Sterneus, F. Johnsson, B. Leckner, Gas mixing in circulating fluidised-bed risers, Chem. Eng. Sci. 55 (1) (2000) 129-148. [26] F. Wei, Y. Jin, Z.Q. Yu, J.Z. Liu, Gas mixing in the cocurrent downflow circulating fluidised bed, Chem. Eng. Technol. 18 (1) (1995) 59-62. [27] Y.H. Yang, X.L. Jia, F. Wei, Y. Jin, Hydrodynamics and lateral gas dispersion in a high-density circulating fluidized bed reactor with bluff internals, Chin. J. Chem. Eng. 9 (3) (2001) 291-296. [28] B. Du, L.S. Fan, F. Wei, W. Warsito, Gas and solids mixing in a turbulent fluidized bed, AIChE. J. 48 (9) (2002) 1896-1909. [29] C.S. Chyang, Y.L. Han, C.H. Chien, Gas dispersion in a rectangular bubbling fluidized bed, J. Taiwan Inst. Chem. Eng. 41 (2) (2010) 195-202. [30] J. Stefanica, J. Hrdlicka, Experimental investigation of radial gas dispersion coefficients in a fluidized bed, Acta Polytech. 52 (3) (2012) 97-100. [31] Y.C. Lin, C.S. Chyang, Radial gas mixing in a fluidized bed using response surface methodology, Powder Technol. 131 (1) (2003) 48-55. [32] M.L. Mastellone, U. Arena, The influence of particle size and density on the radial gas mixing in the dilute region of the circulating fluidized bed, Can. J. Chem. Eng. 77 (2) (1999) 231-237. [33] Y.J. Cho, W. Namkung, S.D. Kim, S. Park, Effect of secondary air injection on axial solid holdup distribution in a circulating fluidized bed, J. Chem. Eng. Japan 27 (2) (1994) 158-164. [34] M. Koksal, F. Hamdullahpur, Gas mixing in circulating fluidized beds with secondary air injection, Chem. Eng. Res. Des. 82 (8) (2004) 979-992. [35] W. Namkung, S.D. Kim, Radial gas mixing in a circulating fluidized bed, Powder Technol. 113 (1-2) (2000) 23-29. [36] W. Namkung, S.D. Kim, Gas backmixing in a circulating fluidized bed, Powder Technol. 99 (1) (1998) 70-78. [37] C.Z. Yang, Y.F. Duan, H.T. Hu, Y.Q. Mao, P.P. Zhang, Characteristic of gas mixing in two-dimensional dual-leg fluidized bed, CIESC J. 63 (12) (2012) 3867-3874. [38] H.R. Yang, J.F. Lu, G.X. Yue, Design theory of circulating fluidized bed boilers and determination of the design parameters, J. Power Eng. 26 (1) (2006) 42-48, 69. [39] G.X. Yue, J.F. Lu, H. Zhang, H.R. Yang, J.S. Zhang, Q. Liu, Z. Li, E. Joos, P. Jaud, Design theory of circulating fluidized bed boilers, Proceedings of the 18th International Conference on Fluidized Bed Combustion, Toronto, Ontario, Canada, 2005, pp. 135-146. [40] W.J. Massman, A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP, Atmos. Environ. 32 (6) (1998) 1111-1127. |