中国化学工程学报 ›› 2024, Vol. 72 ›› Issue (8): 10-18.DOI: 10.1016/j.cjche.2024.03.019
Maoqiao Xiang1,2, Wenjun Ding1,2, Qinghua Dong1,2, Qingshan Zhu1,2,3
收稿日期:
2023-11-26
修回日期:
2024-02-22
出版日期:
2024-08-28
发布日期:
2024-10-17
通讯作者:
Qingshan Zhu,E-mail:qszhu@ipe.ac.cn
基金资助:
Maoqiao Xiang1,2, Wenjun Ding1,2, Qinghua Dong1,2, Qingshan Zhu1,2,3
Received:
2023-11-26
Revised:
2024-02-22
Online:
2024-08-28
Published:
2024-10-17
Contact:
Qingshan Zhu,E-mail:qszhu@ipe.ac.cn
Supported by:
摘要: Titanium monocarbide (TiC), which is the most stable titanium-based carbide, has attracted considerable interest in the fields of energy, catalysis, and structural materials due to its excellent properties. Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications; however major challenges face its realization. Herein, the methods for synthesizing TiC powders based on a reaction system are reviewed. This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders. Notably, strategies for improving the synthesis of high-quality powders are analyzed from the perspective of enhancing heat and mass transfer processes. Furthermore, the critical issues, challenges, and development trends of the synthesis technology and application of high-quality TiC powder are discussed.
Maoqiao Xiang, Wenjun Ding, Qinghua Dong, Qingshan Zhu. Synthesis methods and powder quality of titanium monocarbide[J]. 中国化学工程学报, 2024, 72(8): 10-18.
Maoqiao Xiang, Wenjun Ding, Qinghua Dong, Qingshan Zhu. Synthesis methods and powder quality of titanium monocarbide[J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 10-18.
[1] X.W. Wang, X.Y. Zhong, L. Cheng, Titanium-based nanomaterials for cancer theranostics, Coord. Chem. Rev. 430 (2021) 213662. [2] A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi, A. Pecchia, M. Auf der Maur, A. Liedl, R. Larciprete, D.V. Kuznetsov, D. Saranin, A. Di Carlo, Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells, Nat. Mater. 18 (2019) 1228-1234. [3] A. Saurabh, C.M. Meghana, P.K. Singh, P.C. Verma, Titanium-based materials: synthesis, properties, and applications, Mater. Today Proc. 56 (2022) 412-419. [4] Z. Li, Y.R. Cui, Z.W. Wu, C. Milligan, L. Zhou, G. Mitchell, B. Xu, E.Z. Shi, J.T. Miller, F.H. Ribeiro, Y. Wu, Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts, Nat. Catal. 1 (5) (2018) 349-355. [5] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (7529) (2014) 78-81. [6] M. Mhadhbi, Titanium carbide: synthesis, properties and applications, Brill. Eng. 2 (2) (2020) 1-11. [7] A.I. Gusev, Phase equilibria, phases and compounds in the Ti-C system, Russ. Chem. Rev. 71 (6) (2002) 439-463. [8] A.N. Enyashin, A.L. Ivanovskii, Simulation of the electronic structure of the homologues of titanocarbohedrene Ti8C12, Russ. J. Inorg. Chem. 50 (5) (2005)743-746. [9] J.J. Zhao, B.C. Liu, H.J. Zhai, R.F. Zhou, G.Q. Ni, Z.Z. Xu, Magic numbers and a growth pathway of high-nuclearity titanium carbide clusters, Solid State Commun. 124 (7) (2002) 253-256. [10] S. Gamez-Valenzuela, J.A. Alonso, G. Santoro, J.I. Martinez, Structure, stability, and optical absorption spectra of small TinCx clusters: a first-principles approach, Mon. Not. R. Astron. Soc. 508 (4) (2021) 5074-5091. [11] H. Li, S.L. Ma, L.X. Chen, Z. Yu, Carbon-deficient titanium carbide with highly enhanced hardness, Front. Phys. 8 (2020) 364. [12] S. Saha, B.M. Rajbongshi, V. Ramani, A. Verma, Titanium carbide: an emerging electrocatalyst for fuel cell and electrolyser, Int. J. Hydrog. Energy 46 (24) (2021) 12801-12821. [13] S.J. Huo, Y.J. Wang, M.Y. Yao, Z.K. Zhang, L. Chen, H. Gu, J.H. Ouyang, Y. Zhou, Novel TiC-based composites with enhanced mechanical properties, J. Eur. Ceram. Soc. 41 (11) (2021) 5466-5473. [14] A. Gunen, B. Soylu, O.Karakas, Titanium carbide coating to improve surface characteristic, wear and corrosion resistance of spheroidal graphite cast irons, Surf. Coat. Technol. 437 (2022) 128280. [15] B. Feizi Mohazzab, B. Jaleh, O. Kakuee, A. Fattah-alhosseini, Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance, Appl. Surf. Sci. 478 (2019) 623-635. [16] D.T. Morelli, Thermal conductivity and thermoelectric power of titanium carbide single crystals, Phys. Rev. B 44 (11) (1991) 5453-5458. [17] M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil, S. Migliaccio, C.D. Rocca, S. Leccisotti, A. Lioi, M. Scandurra, G. De Maria, D. Ferro, F. Pu, G. Panzini, L. Politi, R. Scandurra, Effect of titanium carbide coating on the osseointegration response in vitro and in vivo, Biomaterials 28 (4) (2007) 595-608. [18] G. Longo, C.A. Ioannidu, A. Scotto d'Abusco, F. Superti, C. Misiano, R. Zanoni, L. Politi, L. Mazzola, F. Iosi, F. Mura, R. Scandurra, Improving osteoblast response in vitro by a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon, PLoS One 11 (3) (2016) e0152566. [19] S. Agarwal, T. Koyanagi, A. Bhattacharya, L. Wang, Y. Katoh, X. Hu, M. Pagan, S.J. Zinkle, Neutron irradiation-induced microstructure damage in ultra-high temperature ceramic TiC, Acta Mater. 186 (2020) 1-10. [20] T. Chen, Z.X. Deng, D.F. Liu, X.C. Zhu, Y. Xiong, Bioinert TiC ceramic coating prepared by laser cladding: microstructures, wear resistance, and cytocompatibility of the coating, Surf. Coat. Technol. 423 (2021) 127635. [21] H.N. Soe, M. Khangkhamano, J. Meesane, R. Kokoo, A material-based core-shell bioactive compound of mixed oxide phases with TiC on carbon black particles for bone augmentation in oral and maxillofacial surgery, J. Mater. Res. 38 (14) (2023) 3504-3518. [22] G.F. Zhou, M.T. Hou, Y. Ren, Z.Y. Jiang, N.C. Lai, Full-spectrum photo-thermal conversion enabled by plasmonic titanium carbide modified phase change microcapsules, J. Energy Storage 72 (2023) 108458. [23] A. Babapoor, M.S. Asl, Z. Ahmadi, A.S. Namini, Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide, Ceram. Int. 44 (12) (2018) 14541-14546. [24] J.Zhang, Y. Huang, X. Yue, C. Zhang, H. Ru, Effect of TiC content on microstructure and properties of pressureless sintered TiC-Al2O3 conductive ceramic composites, Mater. Mech. Eng. 47 (1) (2023)70-75. [25] L. Han, Y. Zhao, C. Zhang, X. Yue, H. Ru, W. Wang, Effect of TiC content on structure and properties of SiC-TiC ceramic composites by pressureless liquid phase sintering, Mater. Mech. Eng. 46 (10) (2022)34-38. [26] P. Samal, P.R. Vundavilli, A. Meher, M. Mohan Mahapatra, Fabrication and mechanical properties of titanium carbide reinforced aluminium composites, Mater. Today Proc. 18 (2019) 2649-2655. [27] C. Kar, B. Surekha, Characterisation of aluminium metal matrix composites reinforced with titanium carbide and red mud, Mater. Res. Innov. 25 (2) (2021) 67-75. [28] M.M. Ottakam Thotiyl, S.A. Freunberger, Z.Q. Peng, Y.H. Chen, Z. Liu, P.G. Bruce, A stable cathode for the aprotic Li-O2 battery, Nat. Mater. 12 (2013) 1050-1056. [29] H.N. Shi, J.J. Liu, H.R. Huang, J.F. Qi, X. Liang, H.Z. Fu, X.Z. Li, Deposition of titanium carbide catalytic films on vanadium foils by ion beam sputtering for hydrogen separation and purification, Thin Solid Films 773 (2023) 139835. [30] N. Czaplicka, A. Rogala, I. Wysocka, Metal (Mo, W, Ti) carbide catalysts: synthesis and application as alternative catalysts for dry reforming of hydrocarbons-a review, Int. J. Mol. Sci. 22 (22) (2021) 12337. [31] Y. Wang, Z.M. Fu, X.L. Zhang, Z.X. Yang, Understanding the correlation between the electronic structure and catalytic behavior of TiC(001) and TiN(001) surfaces: DFT study, Appl. Surf. Sci. 494 (2019) 57-62. [32] C. Ruberto, A. Vojvodic, B.I. Lundqvist, Nature of versatile chemisorption on TiC(111) and TiN(111) surfaces, Solid State Commun. 141 (1) (2007) 48-52. [33] T. Gomez, E. Florez, J.A. Rodriguez, F. Illas, Reactivity of transition metals (Pd, Pt, Cu, Ag, Au) toward molecular hydrogen dissociation: extended surfaces versus particles supported on TiC(001) or small is not always better and large is not always bad, J. Phys. Chem. C 115 (23) (2011) 11666-11672. [34] L.M. Berger, Titanium carbide synthesis from titanium dioxide and carbon black, J. Hard. Mater. 3 (1) (1992)3-15. [35] R. Koc, Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture, J. Mater. Sci. 33 (4) (1998) 1049-1055. [36] R. Koc, Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture, J. Mater. Sci. 33 (4) (1998) 1049-1055. [37] G.A. Swift, R. Koc, Formation studies of TiC from carbon coated TiO2, J. Mater. Sci. 34 (13) (1999) 3083-3093. [38] R.M. Ren, Z.G. Yang, L.L. Shaw, Synthesis of nanostructured TiC via carbothermic reduction enhanced by mechanical activation, Scr. Mater. 38 (5) (1998) 735-741. [39] Y.L. Zhen, G.H. Zhang, K.C. Chou, Mechanism and kinetics of the carbothermic reduction of titanium-bearing blast furnace slag, Metall. Res. Technol. 113 (5) (2016) 507. [40] X.Y. Xu, Y. Zheng, J.J. Zhang, Z. Ke, H. Wu, Z.K. Yang, Evolution of microstructure and interfacial characteristics of complete solid-solution Ti(C, N)-based cermets fabricated by mechanical activation and subsequent in situ carbothermal reduction, Ceram. Int. 47 (12) (2021) 16786-16793. [41] Y.F. Song, H.X. Zhu, C.J. Deng, W.J. Yuan, J. Ding, Synthesis of stoichiometric titanium carbide by a combination of carbothermal reduction and molten salt method and its characterization, Rare Met. Mater. Eng. 47 (4) (2018) 1082-1088. [42] X.K. Li, Z.J. Dong, A. Westwood, A. Brown, R. Brydson, A. Walton, G.M. Yuan, Z.W. Cui, Y. Cong, Low-temperature preparation of single crystal titanium carbide nanofibers in molten salts, Cryst. Growth Des. 11 (7) (2011) 3122-3129. [43] X.G. Liu, Z.F. Wang, S.W. Zhang, Molten salt synthesis and characterization of titanium carbide-coated graphite flakes for refractory castable applications, Int. J. Appl. Ceram. Technol. 8 (4) (2011) 911-919. [44] X. Liu, S. Zhang, Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts, J. Am. Ceram. Soc. 91 (2) (2008) 667-670. [45] R. Koc, J.S. Folmer, Carbothermal synthesis of titanium carbide using ultrafine titania powders, J. Mater. Sci. 32 (12) (1997) 3101-3111. [46] Y. Leconte, H. Maskrot, N. Herlin-Boime, D. Porterat, C. Reynaud, S. Gierlotka, A. Swiderska-Sroda, J. Vicens, TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics, J. Phys. Chem. B 110 (1) (2006) 158-163. [47] R. Koc, J.S. Folmer, Synthesis of submicrometer titanium carbide powders, J. Am. Ceram. Soc. 80 (4) (1997) 952-956. [48] K.H. Wu, Y. Jiang, S.Q. Jiao, K.C. Chou, G.H. Zhang, Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method, J. Solid State Chem. 277 (2019) 793-803. [49] H. Ha, G.M. Hwang, H.D. Han, Mechanism on the synthesis of titanium carbide by SHS (self-propagating high-temperature synthesis) method, J. Korean Ceram. Soc. 31 (11) (1994) 1249-1258. [50] P. Bazhin, M. Antipov, A. Konstantinov, N. Khomenko, In-situ study of the process of self-propagating high-temperature synthesis of titanium carbide with a Nichrome binder, Mater. Lett. 308 (2022) 131086. [51] A.A. Hovhannisyan, S.K. Dolukhanyan, O.P. Ter-Galstyan, N.L. Mnatsakanyan, K.V. Asatryan, S.E. Mnatsakanyan, S.S. Mardanyan, G.N. Muradyan, Synthesis of non-stoichiometric carbides and carbohydrides of Ti and Ti-Nb using self-propagating high-temperature synthesis technique, Materialia 30 (2023) 101820. [52] H. Nadimi, M. Soltanieh, H. Sarpoolaky, The Formation mechanism of nanocrystalline TiC from KCl-LiCl molten salt medium, Ceram. Int. 46 (11) (2020) 18725-18733. [53] M.G. Yan, Q.M. Xiong, J.T. Huang, X.F. Hou, L. Zhang, X.B. Li, Z.J. Feng, Molten salt synthesis of titanium carbide using different carbon sources as templates, Ceram. Int. 47 (12) (2021) 17589-17596. [54] L.X. Yang, Y. Wang, R.J. Liu, H.J. Liu, X. Zhang, C.L. Zeng, C. Fu, In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti(II) species, J. Mater. Sci. Technol. 37 (2020) 173-180. [55] V.A. Shcherbakov, A.N. Gryadunov, A.V. Karpov, N.V. Sachkova, A.E. Sychev, Self-propagating high-temperature synthesis of TiC+ xC composites, Inorg. Mater. 56 (6) (2020) 567-571. [56] M. Song, Y.F. Yang, M.Q. Xiang, Q.S. Zhu, H.D. Zhao, Synthesis of nano-sized TiC powders by designing chemical vapor deposition system in a fluidized bed reactor, Powder Technol. 380 (2021) 256-264. [57] Y. Okabe, J.I. Hojo, A. Kato, Formation of fine titanium carbide powders by a vapor-phase reaction, J. Ceram. Assoc. Jpn. 86 (999) (1978) 518-526. [58] A.V. Samokhin, N.V. Alekseev, M.A. Sinaiskiy, Y.V. Tsvetkov, Equilibrium energy and technological characteristics of plasma synthesis of titanium nitride, carbide, and carbonitride from titanium tetrachloride, Inorg. Mater. Appl. Res. 7 (3) (2016) 344-349. [59] A.V. Samokhin, D.E. Kirpichev, N.V. Alekseev, M.A. Sinaisky, Y.V. Tsvetkov, Synthesis of titanium nitride and carbonitride nanopowders in confined-jet flow plasma reactor, High Energy Chem. 50 (6) (2016) 466-472. [60] D.W. Lee, J.H. Yu, T.S. Jang, Properties of TiC and TiCN nanoparticles fabricated by a magnesium thermal reduction process, Solid State Phenom. 124-126 (2007) 1225-1228. [61] D.D. Harbuck, C.F. Davidson, M.B. Shirts, Gas-phase production of titanium nitride and carbide powders, JOM 38 (9) (1986) 47-50. [62] Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies, Chem. Rev. 120 (2) (2020) 919-985. [63] H. Wu, H.L. Tan, C.Y. Toe, J. Scott, L. Wang, R. Amal, Y.H. Ng, Photocatalytic and photoelectrochemical systems: similarities and differences, Adv. Mater. 32 (18) (2020) e1904717. [64] Y.H. Wang, Z.Y. Wang, C.T. Dinh, J. Li, A. Ozden, M. Golam Kibria, A. Seifitokaldani, C.S. Tan, C.M. Gabardo, M.C. Luo, H. Zhou, F.W. Li, Y. Lum, C. McCallum, Y. Xu, M.X. Liu, A. Proppe, A. Johnston, P. Todorovic, T.T. Zhuang, D. Sinton, S.O. Kelley, E.H. Sargent, Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis, Nat. Catal. 3 (2020) 98-106. [65] P.B. Merrill, S.S. Perry, P. Frantz, S.V. Didziulis, Adsorption of water on TiC(100): evidence for complex reaction and desorption pathways, J. Phys. Chem. B 102 (39) (1998) 7606-7612. [66] P. Frantz, S.V. Didziulis, L.C. Fernandez-Torres, R.L. Guenard, S.S. Perry, Reaction of methanol with TiC and VC (100) surfaces, J. Phys. Chem. B 106 (25) (2002) 6456-6464. [67] S.V. Didziulis, H.I. Kim, Chemistry of methyl formate with TiC(100): comparison of experiment with density functional calculations, J. Phys. Chem. C 111 (30) (2007) 11275-11284. [68] F. Vines, C. Sousa, P. Liu, J.A. Rodriguez, F. Illas, A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides, J. Chem. Phys. 122 (17) (2005) 174709. [69] J.Y. Chen, X. Wang, X.Q. Cui, G.M. Yang, W.T. Zheng, Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction, Chem. Commun. 50 (5) (2014) 557-559. [70] T.Z. Huang, H.Y. Fang, S. Mao, J.M. Yu, L. Qi, In-situ synthesized TiC@CNT as high-performance catalysts for oxygen reduction reaction, Carbon 126 (2018) 566-573. [71] Y.C. Kimmel, X.G. Xu, W.T. Yu, X.D. Yang, J.G. Chen, Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts, ACS Catal. 4 (5) (2014) 1558-1562. [72] T. Ferri, D. Gozzi, A. Latini, Hydrogen evolution reaction (HER) at thin film and bulk TiC electrodes, Int. J. Hydrog. Energy 32 (18) (2007) 4692-4701. [73] Y.C. Kimmel, L. Yang, T.G. Kelly, S.A. Rykov, J.G. Chen, Theoretical prediction and experimental verification of low loading of platinum on titanium carbide as low-cost and stable electrocatalysts, J. Catal. 312 (2014) 216-220. [74] Y.Y. Yang, X.W. Xue, Y. Qin, X.D. Wang, M. Yao, Z.H. Qin, H. Huang, Oxygen evolution reaction on pristine and oxidized TiC (100) surface in Li-O2 battery, J. Phys. Chem. C 122 (24) (2018) 12665-12672. [75] W.S. Williams, R.D. Schaal, Elastic deformation, plastic flow, and dislocations in single crystals of titanium carbide, J. Appl. Phys. 33 (3) (1962) 955-962. [76] C. Maerky, M.O. Guillou, J.L. Henshall, R.M. Hooper, Indentation hardness and fracture toughness in single crystal TiC0.96, Mater. Sci. Eng. A 209 (1-2) (1996) 329-336. [77] F.W. Vahldiek, The microstructure of single-crystal titanium carbide, J. Less Common Met. 12 (6) (1967) 429-440. [78] S. Shimada, J. Watanabe, K. Kodaira, T. Matsushita, Flux growth and characterization of TiC crystals, J. Mater. Sci. 24 (7) (1989) 2513-2515. [79] Q.H. Zhao, J. Wu, A.K. Chaddha, H.S. Chen, J.D. Parsons, D. Downham, Defect structure in single crystal titanium carbide, J. Mater. Res. 9 (8) (1994) 2096-2101. [80] A.V. Kasimtsev, V.V. Zhigunov, The mechanism and kinetics of producing single-crystal powders of titanium carbide via a hydride-calcium method, Russ. J. Non Ferr. Met. 49 (6) (2008) 471-477. [81] S.B. Jin, P. Shen, B.L. Zou, Q.C. Jiang, Morphology evolution of TiCx grains during SHS in an Al-Ti-C system, Cryst. Growth Des. 9 (2) (2009) 646-649. [82] J.F. Nie, Y.Y. Wu, P.T. Li, H. Li, X.F. Liu, Morphological evolution of TiC from octahedron to cube induced by elemental nickel, CrystEngComm 14 (6) (2012) 2213-2221. [83] D.D. Zhang, H.L. Liu, L.P. Sun, F. Bai, Y. Wang, J.G. Wang, Shape-controlled TiCx particles fabricated by combustion synthesis in the Cu-Ti-C system, Crystals 7 (7) (2017) 205. [84] K.J. Jeong, Y. Lee, T.N. Huynh, H. Nersisyan, H. Suh, J. Lee, Liquid-metal-assisted synthesis of single-crystalline TiC nanocubes with exposed(100) facets for enhanced electrocatalytic activity in the hydrogen evolution reaction, Small Meth. 7 (1) (2023) e2201076. [85] B.X. Dong, X.D. Ma, T.S. Liu, Q. Li, H.Y. Yang, S.L. Shu, B.Q. Zhang, F. Qiu, Q.C. Jiang, Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles, J. Am. Ceram. Soc. 104 (6) (2021) 2820-2835. [86] B.X. Dong, H.Y. Yang, F. Qiu, Q. Li, S.L. Shu, B.Q. Zhang, Q.C. Jiang, Design of TiC nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: experiment and first-principle calculation, Mater. Des. 181 (2019) 107951. [87] D.E. Grove, U. Gupta, A.W. Castleman, Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cuboctahedron, ACS Nano 4 (1) (2010) 49-54. [88] B. Xu, F. Jiang, S.J. Chen, M. Tanaka, S. Tashiro, N. Van Anh, Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole, Chin. Phys. B 27 (3) (2018) 034701. [89] T. Takahashi, K. Sugiyama, H. Itoh, Single crystal growth of titanium carbide by chemical vapor deposition, J. Electrochem. Soc. 117 (4) (1970) 541. [90] Y. Yuan, J. Pan, The morphology and growth mechanism of TiC whisker prepared by chemical vapour deposition, J. Mater. Sci. 33 (24) (1998) 5773-5780. [91] Y.W. Yuan, J.S. Pan, The effect of vapor phase on the growth of TiC whiskers prepared by chemical vapor deposition, J. Cryst. Growth 193 (4) (1998) 585-591. [92] K. Sugiyama, H. Mizuno, S. Motojima, Y. Takahashi, Single crystal growth of titanium carbide from the vapor by a modified hot wire method, J. Cryst. Growth 46 (6) (1979) 788-794. [93] M. Song, Y.F. Yang, H.D. Zhao, M.Q. Xiang, Q.S. Zhu, J.B. Jia, C.Q. Hu, F. Yue, Synthesis of TiCl2 powders through reactive gas phase infiltration in a fluidized bed reactor, Particuology 57 (2021) 95-103. [94] M. Song, D.H. Chen, Y.F. Yang, M.Q. Xiang, Q.S. Zhu, H.D. Zhao, L. Ward, X.B. Chen, Crystal facet engineering of single-crystalline TiC nanocubes for improved hydrogen evolution reaction, Adv. Funct. Mater. 31 (6) (2021) 2008028. [95] Q.H. Dong, S.G. Ma, J.Y. Zhu, F. Yue, Y.Q. Geng, J. Zheng, Y. Ge, C.L. Fan, H.G. Zhang, M.Q. Xiang, Q.S. Zhu, Ultrahigh mass activity for the hydrogen evolution reaction by anchoring platinum single atoms on active (100) facets of TiC via cation defect engineering, Adv. Funct. Mater. 33 (3) (2023) 2210665. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||