[1] P.P. Liang, Q.Y. Tang, Y. Cai, G.Y. Liu, W.L. Si, J.J. Shao, W. Huang, Q. Zhang, X.C. Dong, Self-quenched ferrocenyl diketopyrrolopyrrole organic nanoparticles with amplifying photothermal effect for cancer therapy, Chem. Sci. 8 (11) (2017) 7457-7463. [2] G.X. Feng, G.Q. Zhang, D. Ding, Design of superior phototheranostic agents guided by Jablonski diagrams, Chem. Soc. Rev. 49 (22) (2020) 8179-8234. [3] Y.J. Zhu, Q.G. Li, C.J. Wang, Y. Hao, N.L. Yang, M.J. Chen, J.S. Ji, L.Z. Feng, Z. Liu, Rational design of biomaterials to potentiate cancer thermal therapy, Chem. Rev. 123 (11) (2023) 7326-7378. [4] C. Li, G. Jiang, J. Yu, W. Ji, L. Liu, P. Zhang, J. Du, C. Zhan, J. Wang, B.Z. Tang, Fluorination enhances NIR-II emission and photothermal conversion efficiency of phototheranostic agents for imaging-guided cancer therapy, Adv. Mater. 35 (3) (2023) e2208229. [5] Y.M. Yao, Y. Zhang, J.W. Zhang, X.D. Yang, D. Ding, Y. Shi, H.E. Xu, X.K. Gao, Azulene-containing squaraines for photoacoustic imaging and photothermal therapy, ACS Appl. Mater. Interfaces 14 (17) (2022) 19192-19203. [6] Q. Cheng, Y.L. Tian, H.P. Dang, C.C. Teng, K. Xie, D.L. Yin, L.F. Yan, Antiquenching macromolecular NIR-II probes with high-contrast brightness for imaging-guided photothermal therapy under 1064 nm irradiation, Adv. Healthc. Mater. 11 (1) (2022) e2101697. [7] H. Gu, W.J. Liu, S.J. Zhen, S.R. Long, W. Sun, J.F. Cao, X.Z. Zhao, J.J. Du, J.L. Fan, X.J. Peng, “Internal and external combined” nonradiative decay-based nanoagents for photoacoustic image-guided highly efficient photothermal therapy, ACS Appl. Mater. Interfaces 13 (39) (2021) 46353-46360. [8] J. Qi, Y. Fang, R.T.K. Kwok, X. Zhang, X. Hu, J.W.Y. Lam, D. Ding, B.Z. Tang, Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice, ACS Nano 11 (7) (2017) 7177-7188. [9] X. Rong, X. Xia, R. Wang, Z.H. Su, T. Liu, Z.W. Zhang, S.R. Long, J.J. Du, J.L. Fan, W. Sun, X.J. Peng, Near-infrared and highly photostable squaraine-based nanoparticles for photoacoustic imaging guided photothermal therapy, Dyes Pigm. 211 (2023) 111055. [10] D.M. Xi, M. Xiao, J.F. Cao, L.Y. Zhao, N. Xu, S.R. Long, J.L. Fan, K. Shao, W. Sun, X.H. Yan, X.J. Peng, NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy, Adv. Mater. 32 (11) (2020) e1907855. [11] L. Cheng, W.W. He, H. Gong, C. Wang, Q. Chen, Z.P. Cheng, Z. Liu, PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy, Adv. Funct. Mater. 23 (47) (2013) 5893-5902. [12] Y.J. Liu, P. Bhattarai, Z.F. Dai, X.Y. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer, Chem. Soc. Rev. 48 (7) (2019) 2053-2108. [13] K.W. Chang, Y.B. Liu, D.H. Hu, Q.F. Qi, D.Y. Gao, Y.T. Wang, D.L. Li, X.J. Zhang, H.R. Zheng, Z.H. Sheng, Z. Yuan, Highly stable conjugated polymer dots as multifunctional agents for photoacoustic imaging-guided photothermal therapy, ACS Appl. Mater. Interfaces 10 (8) (2018) 7012-7021. [14] C. Yin, X.Z. Li, Y. Wang, Y.Y. Liang, S. Zhou, P.C. Zhao, C.S. Lee, Q.L. Fan, W. Huang, Organic semiconducting macromolecular dyes for NIR-II photoacoustic imaging and photothermal therapy, Adv. Funct. Mater. 31 (37) (2021) 2104650. [15] L. Zhang, W. Zhuang, Y. Yuan, J.J. Shen, W.W. Shi, G. Liu, W.B. Wu, Q. Zhang, G.Q. Shao, Q.B. Mei, Q.L. Fan, Novel glutathione activated smart probe for photoacoustic imaging, photothermal therapy, and safe postsurgery treatment, ACS Appl. Mater. Interfaces 14 (21) (2022) 24174-24186. [16] Y. Zhang, Q. Shen, Q. Li, P.P. He, J.Y. Li, F. Huang, J. Wang, Y.F. Duan, C. Shen, F. Saleem, Z.M. Luo, L.H. Wang, Ultrathin two-dimensional plasmonic PtAg nanosheets for broadband phototheranostics in both NIR-I and NIR-II biowindows, Adv. Sci. 8 (17) (2021) e2100386. [17] F. Chen, D.L. Yang, H.F. Shen, M. Deng, Y. Zhang, G.L. Zhong, Y.L. Hu, L.X. Weng, Z.M. Luo, L.H. Wang, Hydrothermal synthesis of novel rhombic dodecahedral SnS nanocrystals for highly efficient photothermal therapy, Chem. Commun. 55 (19) (2019) 2789-2792. [18] X.Y. Qu, Y. Hong, H. Cai, X. Sun, Q. Shen, D.L. Yang, X.C. Dong, A.H. Jiao, P. Chen, J.J. Shao, Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy, Rare Met. 41 (1) (2022) 56-66. [19] Y. Ding, Z. Yuan, J.W. Hu, K. Xu, H. Wang, P. Liu, K.Y. Cai, Surface modification of titanium implants with micro-nano-topography and NIR photothermal property for treating bacterial infection and promoting osseointegration, Rare Met. 41 (2) (2022) 673-688. [20] S. Hong, D.W. Zheng, C. Zhang, Q.X. Huang, S.X. Cheng, X.Z. Zhang, Vascular disrupting agent induced aggregation of gold nanoparticles for photothermally enhanced tumor vascular disruption, Sci. Adv. 6 (23) (2020) eabb0020. [21] Y.W. Chen, Y.L. Su, S.H. Hu, S.Y. Chen, Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment, Adv. Drug Deliv. Rev. 105 (Pt B) (2016) 190-204. [22] W. Liu, X.Y. Zhang, L. Zhou, L. Shang, Z.Q. Su, Reduced graphene oxide (rGO) hybridized hydrogel as a near-infrared (NIR)/pH dual-responsive platform for combined chemo-photothermal therapy, J. Colloid Interface Sci. 536 (2019) 160-170. [23] C.B. Leng, X. Zhang, F.X. Xu, Y. Yuan, H. Pei, Z.H. Sun, L. Li, Z.H. Bao, Engineering gold nanorod-copper sulfide heterostructures with enhanced photothermal conversion efficiency and photostability, Small 14 (12) (2018) e1703077. [24] Y. Zhang, Y. Li, J.Y. Li, F. Mu, J. Wang, C. Shen, H. Wang, F. Huang, B. Chen, Z.M. Luo, L.H. Wang, DNA-templated Ag@Pd nanoclusters for NIR-II photoacoustic imaging-guided photothermal-augmented nanocatalytic therapy, Adv. Healthc. Mater. 12 (22) (2023) e2300267. [25] Y. Zhang, H.F. Du, P.P. He, C. Shen, Q. Li, Y.F. Duan, Z.W. Shao, F. Mu, F. Huang, P.Y. Li, P.Q. Gao, P. Yu, Z.M. Luo, L.H. Wang, Exfoliated FePS3 nanosheets for T1-weighted magnetic resonance imaging-guided near-infrared photothermal therapy in vivo, Sci. China Mater. 64 (10) (2021) 2613-2623. [26] X.S. Wang, Q. Chen, C. Shen, J. Dai, C. Zhu, J.Y. Zhang, Z.W. Wang, Q.S. Song, L. Wang, H. Li, Q. Wang, Z. Liu, Z.M. Luo, X. Huang, W. Huang, Spatially controlled preparation of layered metallic-semiconducting metal chalcogenide heterostructures, ACS Nano 15 (7) (2021) 12171-12179. [27] H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler, J.S. Kim, Organic molecule-based photothermal agents: an expanding photothermal therapy universe, Chem. Soc. Rev. 47 (7) (2018) 2280-2297. [28] C.Y. Yang, L.X. Guo, K.X. Zhang, G. Wang, Q.S. Yu, Z.H. Gan, X.G. Gu, Diradical-featured organic small-molecule photothermal material based on 4, 6-di(2-thienyl) thieno[3, 4-c][1, 2, 5]thiadiazole for photothermal immunotherapy, Adv. Funct. Mater. 33 (52) (2023) 2306360. [29] Y.Z. Liu, X.Y. Ran, D.H. Zhou, H. Zhang, Y.J. Chen, J.X. Xu, S.Y. Chen, Q.Q. Kong, X.Q. Yu, K. Li, Novel dibenzofulvene-based NIR-II emission phototheranostic agent with an 82.6% photothermal conversion efficiency for photothermal therapy, Adv. Funct. Mater. 34 (8) (2024) 2311365. [30] B. Guo, Z.M. Huang, Q. Shi, E. Middha, S.D. Xu, L. Li, M. Wu, J.W. Jiang, Q.L. Hu, Z.W. Fu, B. Liu, Organic small molecule based photothermal agents with molecular rotors for malignant breast cancer therapy, Adv. Funct. Mater. 30 (5) (2020) 1907093. [31] X.H. Zhang, S.S. Xue, W. Pan, H.Y. Wang, K.Y. Wang, N. Li, B. Tang, A heat shock protein-inhibiting molecular photothermal agent for mild-temperature photothermal therapy, Chem. Commun. 59 (2) (2022) 235-238. [32] H.Y. Wang, J.J. Chang, M.W. Shi, W. Pan, N. Li, B. Tang, A dual-targeted organic photothermal agent for enhanced photothermal therapy, Angew. Chem. Int. Ed Engl. 58 (4) (2019) 1057-1061. [33] C. Aumaitre, C. Rodriguez-Seco, J. Jover, O. Bardagot, F. Caffy, Y. Kervella, N. Lopez, E. Palomares, R. Demadrille, Visible and near-infrared organic photosensitizers comprising isoindigo derivatives as chromophores: synthesis, optoelectronic properties and factors limiting their efficiency in dye solar cells, J. Mater. Chem. A 6 (21) (2018) 10074-10084. [34] N.M. Randell, C.L. Radford, J.L. Yang, J. Quinn, D.L. Hou, Y.N. Li, T.L. Kelly, Effect of acceptor unit length and planarity on the optoelectronic properties of isoindigo-thiophene donor-acceptor polymers, Chem. Mater. 30 (14) (2018) 4864-4873. [35] Y. Rout, V. Chauhan, R. Misra, Synthesis and characterization of isoindigo-based push-pull chromophores, J. Org. Chem. 85 (7) (2020) 4611-4618. [36] S.M. Vijayan, N. Sparks, J.K. Roy, C. Smith, C. Tate, N.I. Hammer, J. Leszczynski, D.L. Watkins, Evaluating donor effects in isoindigo-based small molecular fluorophores, J. Phys. Chem. A 124 (51) (2020) 10777-10786. [37] S. Liu, X. Zhou, H. Zhang, H. Ou, J.W.Y. Lam, Y. Liu, L. Shi, D. Ding, B.Z. Tang, Molecular motion in aggregates: manipulating TICT for boosting photothermal theranostics, J. Am. Chem. Soc. 141 (13) (2019) 5359-5368. [38] G.C. Qing, X.X. Zhao, N.Q. Gong, J. Chen, X.L. Li, Y.L. Gan, Y.C. Wang, Z. Zhang, Y.X. Zhang, W.S. Guo, Y. Luo, X.J. Liang, Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection, Nat. Commun. 10 (1) (2019) 4336. |