[1] Q. Zhang, Y.L. Jin, Y. Fang, H. Zhao, Adaptive evolution and selection of stress-resistant Saccharomyces cerevisiae for very high-gravity bioethanol fermentation, Electron. J. Biotechnol. 41 (2019) 88-94. [2] C. Du, Y.M. Li, X.Y. Zhao, X.Z. Pei, W.J. Yuan, F.W. Bai, Y. Jiang, The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345, Appl. Microbiol. Biotechnol. 103 (6) (2019) 2845-2855. [3] M. Jawad, H. Wang, Y.D. Wu, O. Rehman, Y.X. Song, R. Xu, Q. Zhang, H.P. Gao, C. Xue, Lignocellulosic ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii co-culture using non-detoxified corn stover hydrolysate, J. Biotechnol. 379 (2024) 1-5. [4] G.M. Walker, T.O. Basso, Mitigating stress in industrial yeasts, Fungal Biol. 124 (5) (2020) 387-397. [5] R.F. Alves, A.M. Zetty-Arenas, H. Demirci, O. Dias, I. Rocha, T.O. Basso, S. Freitas, Enhancing acetic acid and 5-hydroxymethyl furfural tolerance of C. saccharoperbutylacetonicum through adaptive laboratory evolution, Process. Biochem. 101 (2021) 179-189. [6] M.P. Naghshbandi, M. Tabatabaei, M. Aghbashlo, V.K. Gupta, A. Sulaiman, K. Karimi, H. Moghimi, M. Maleki, Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches, Renew. Sustain. Energy Rev. 115 (2019) 109353. [7] T.E. Sandberg, M.J. Salazar, L.L. Weng, B.O. Palsson, A.M. Feist, The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology, Metab. Eng. 56 (2019) 1-16. [8] T. Fernandes, C. Osorio, M.J. Sousa, R. Franco-Duarte, Contributions of adaptive laboratory evolution towards the enhancement of the biotechnological potential of non-conventional yeast species, J. Fungi 9 (2) (2023) 186. [9] T. Hirasawa, T. Maeda, Adaptive laboratory evolution of microorganisms: Methodology and application for bioproduction, Microorganisms 11 (1) (2022) 92. [10] P.C. Salas-Navarrete, A.I.M. de Oca Miranda, A. Martinez, L. Caspeta, Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature, Appl. Microbiol. Biotechnol. 106 (1) (2022) 383-399. [11] V. Narayanan, V. Sanchez I Nogue, E.W.J. van Niel, M.F. Gorwa-Grauslund, Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae, AMB Express 6 (1) (2016) 59. [12] O. Rehman, A. Shahid, C.G. Liu, J.R. Xu, M.R. Javed, N.H. Eid, M. Gull, M. Nawaz, M.A. Mehmood, Optimization of low-temperature energy-efficient pretreatment for enhanced saccharification and fermentation of Conocarpus erectus leaves to produce ethanol using Saccharomyces cerevisiae, Biomass Convers. Biorefin. 10 (4) (2020) 1269-1278. [13] B. Li, N. Liu, X.B. Zhao, Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains, Biotechnol. Biofuels Bioprod. 15 (1) (2022) 28. [14] M.M. Zhang, L. Xiong, Y.J. Tang, M.A. Mehmood, Z.K. Zhao, F.W. Bai, X.Q. Zhao, Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes, Biotechnol. Biofuels 12 (1) (2019) 116. [15] G. Vanmarcke, M.M. Demeke, M.R. Foulquie-Moreno, J.M. Thevelein, Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates, Biotechnol. Biofuels 14 (1) (2021) 92. [16] J.R. Almeida, T. Modig, A. Petersson, B. Hahn-Hagerdal, G. Liden, M.F. Gorwa-Grauslund, Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae, J. Chem. Technol. Biotechnol. 82 (4) (2007) 340-349. [17] Z.X. Shui, H. Qin, B. Wu, Z.Y. Ruan, L.S. Wang, F.R. Tan, J.L. Wang, X.Y. Tang, L.C. Dai, G.Q. Hu, M.X. He, Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors, Appl. Microbiol. Biotechnol. 99 (13) (2015) 5739-5748. [18] A.A. Petropavlovskiy, M.G. Tauro, P. Lajoie, M.L. Duennwald, A quantitative imaging-based protocol for yeast growth and survival on agar plates, STAR Protoc. 1 (3) (2020) 100182. [19] L. Caspeta, J. Nielsen, Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses, mBio 6 (4) (2015) e00431. [20] M. Xiao, L. Wang, Y.D. Wu, C. Cheng, L.J. Chen, H.Z. Chen, C. Xue, Hybrid dilute sulfuric acid and aqueous ammonia pretreatment for improving butanol production from corn stover with reduced wastewater generation, Bioresour. Technol. 278 (2019) 460-463. [21] Hemansi, Himanshu, A.K. Patel, J.K. Saini, R.R. Singhania, Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production, Bioresour. Technol. 344 (Pt B) (2022) 126247. [22] Y. Kitichantaropas, C. Boonchird, M. Sugiyama, Y. Kaneko, S. Harashima, C. Auesukaree, Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation, AMB Express 6 (1) (2016) 107. [23] J. Wright, E. Bellissimi, E. de Hulster, A. Wagner, J.T. Pronk, A.J. van Maris, Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae, FEMS Yeast Res. 11 (3) (2011) 299-306. [24] P. Morales, J. C. Gentina, G. Aroca, S. I. Mussatto, Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus, Ind. Crop. Prod., 106 (2017) 5-11. [25] J.K. Ko, T. Enkh-Amgalan, G. Gong, Y. Um, S.M. Lee, Improved bioconversion of lignocellulosic biomass by Saccharomyces cerevisiae engineered for tolerance to acetic acid, GCB Bioenergy 12 (1) (2020) 90-100. [26] R. Koppram, E. Albers, L. Olsson, Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass, Biotechnol. Biofuels 5 (1) (2012) 32. [27] C. Du, Y.M. Li, R.J. Xiang, W.J. Yuan, Formate dehydrogenase improves the resistance to formic acid and acetic acid simultaneously in Saccharomyces cerevisiae, Int. J. Mol. Sci. 23 (6) (2022) 3406. [28] Z.Q. Wang, B.S. Dien, K.D. Rausch, M.E. Tumbleson, V. Singh, Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast, Bioresour. Technol. 282 (2019) 103-109. [29] S.R. Pereira, V.S.I. Nogue, C.J.R. Frazao, L.S. Serafim, M.F. Gorwa-Grauslund, A.M.R.B. Xavier, Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering, Biotechnol. Biofuels 8 (2015) 50. [30] R. Landaeta, G. Aroca, F. Acevedo, J.A. Teixeira, S.I. Mussatto, Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation, Appl. Energy 102 (2013) 124-130. [31] A.S. Qureshi, J. Zhang, J. Bao, High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain, Bioresour. Technol. 189 (2015) 399-404. [32] L.E. Biazi, S.C. Santos, A.A. Kaupert Neto, A.S. Sousa, L.B. Soares, E. Renzano, J. Velasco, S.C. Rabelo, A.C. Costa, J.L. Ienczak, Adaptation strategy to increase the tolerance of scheffersomyces stipitis NRRL Y-7124 to inhibitors of sugarcane bagasse hemicellulosic hydrolysate through comparative studies of proteomics and fermentation, BioEnergy Res. 15 (1) (2022) 479-492. [33] C. Du, Y.M. Li, R.J. Xiang, Y. He, H. Sun, H.N. Wang, W.J. Yuan, Co-utilization of multiple lignocellulose-derived sugars and inhibitors by the robust mutant Kluyveromyces marxianus through adaptive laboratory evolution, Fuel 315 (2022) 122816. [34] P. Palakawong Na Ayutthaya, T. Charoenrat, W. Krusong, S. Pornpukdeewattana, Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production, 3 Biotech. 9 (2019). [35] H. Nouri, M. Ahi, M. Azin, S.L. Mousavi Gargari, Detoxification vs. adaptation to inhibitory substances in the production of bioethanol from sugarcane bagasse hydrolysate: A case study, Biomass Bioenergy 139 (2020) 105629. |