[1] X.Q. Fan, J.Y. Sun, Y. Yang, J.D. Wang, Z.L. Huang, Z.W. Liao, G.D. Han, Y.R. Yang, L. Xie, H.Y. Su, Thermal-stability analysis of ethylene-polymerization fluidized-bed reactors under condensed-mode operation through a TPM-PBM integrated model, Ind. Eng. Chem. Res. 58 (22) (2019) 9486-9499. [2] M.R. Abbasi, A. Shamiri, M.A. Hussain, A review on modeling and control of olefin polymerization in fluidized-bed reactors, Rev. Chem. Eng. 35 (3) (2019) 311-333. [3] T.Y. Xie, K.B. McAuley, J.C.C. Hsu, D.W. Bacon, Gas phase ethylene polymerization: Production processes, polymer properties, and reactor modeling, Ind. Eng. Chem. Res. 33 (3) (1994) 449-479. [4] X.Q. Fan, J.Y. Sun, J.D. Wang, Z.L. Huang, Z.W. Liao, G.D. Han, Y.R. Yang, L. Xie, H.Y. Su, Stability analysis of ethylene polymerization in a liquid-containing gas-solid fluidized bed reactor, Ind. Eng. Chem. Res. 57 (16) (2018) 5616-5629. [5] W.H. Ray, Modelling of polymerization phenomena, Berichte Der Bunsengesellschaft Fur Physikalische Chemie, 90 (1986) 947-955. [6] K.Y. Choi, W.H. Ray, The dynamic behavior of continuous stirred-bed reactors for the solid catalyzed gas phase polymerization of propylene, Chem. Eng. Sci. 43 (10) (1988) 2587-2604. [7] A.S. Ibrehem, M.A. Hussain, N.M. Ghasem, Modified mathematical model for gas phase olefin polymerization in fluidized-bed catalytic reactor, Chem. Eng. J. 149 (1-3) (2009) 353-362. [8] H.P. Cui, N. Mostoufi, J. Chaouki, Characterization of dynamic gas-solid distribution in fluidized beds, Chem. Eng. J. 79 (2) (2000) 133-143. [9] F.A.N. Fernandes, L.M.F. Lona, Heterogeneous modeling for fluidized-bed polymerization reactor, Chem. Eng. Sci. 56 (3) (2001) 963-969. [10] E.S. Sbaaei, M.M. Kamal, T.S. Ahmed, Mathematical versus commercial software modeling for ziegler-natta catalyzed gas-phase polymerization in fluidized-bed reactors: A comparative review and proposals for future developments, Powder Technol. 420 (2023) 118371. [11] K.B. McAuley, J.F. MacGregor, A.E. Hamielec, A kinetic model for industrial gas-phase ethylene copolymerization, AlChE. J. 36 (6) (1990) 837-850. [12] M. Alizadeh, N. Mostoufi, S. Pourmahdian, R. Sotudeh-Gharebagh, Modeling of fluidized bed reactor of ethylene polymerization, Chem. Eng. J. 97 (1) (2004) 27-35. [13] R. Jafari, R. Sotudeh-Gharebagh, N. Mostoufi, Modular simulation of fluidized bed reactors (chem. eng. technol. 2004, 27, 123), Chem. Eng. Technol. 27 (3) (2004) 224. [14] A. Kiashemshaki, N. Mostoufi, R. Sotudeh-Gharebagh, Two-phase modeling of a gas phase polyethylene fluidized bed reactor, Chem. Eng. Sci. 61 (12) (2006) 3997-4006. [15] Y.F. Zhou, J.D. Wang, Y.R. Yang, W.Q. Wu, Modeling of the temperature profile in an ethylene polymerization fluidized-bed reactor in condensed-mode operation, Ind. Eng. Chem. Res. 52 (12) (2013) 4455-4464. [16] H.H. Feng, G.X. Yang, H.L. Wang, X.P. Gu, L.F. Feng, C.L. Zhang, X. Chen, D.F. Wang, Y.X. Gao, Kinetic parameter estimation for linear low-density polyethylene gas-phase process from molecular weight distribution and short-chain branching distribution measurements, Ind. Eng. Chem. Res. 62 (6) (2023) 2548-2560. [17] H.H. Feng, X. Chen, X.P. Gu, L.F. Feng, D.F. Wang, G.X. Yang, Y.X. Gao, C.L. Zhang, G.H. Hu, Modeling of the molecular weight distribution and short chain branching distribution of linear low-density polyethylene from a pilot scale gas phase polymerization process, Chem. Eng. Sci. 261 (2022) 117952. [18] K.B. McAuley, D.A. MacDonald, P.J. McLellan, Effects of operating conditions on stability of gas-phase polyethylene reactors, AlChE. J. 41 (4) (1995) 868-879. [19] X.Q. Fan, X.N. You, C.J. Ren, J.Y. Sun, J.D. Wang, Y.R. Yang, W.Q. Wu, Investigation of a dynamic operation mode of ethylene polymerization process with a liquid-containing fluidized bed, Chem. Eng. J. 471 (2023) 144584. [20] N.P.G. Salau, G.A. Neumann, J.O. Trierweiler, A.R. Secchi, Dynamic behavior and control in an industrial fluidized-bed polymerization reactor, Ind. Eng. Chem. Res. 47 (16) (2008) 6058-6069. [21] W.L. Luyben, Snowball effects in reactor/separator processes with recycle, Ind. Eng. Chem. Res. 33 (2) (1994) 299-305. [22] R.F. Alves, T.F.L. McKenna, Modelling of condensed mode cooling during the polymerization of ethylene in fluidized bed reactors, Ind. Eng. Chem. Res. 60 (32) (2021) 11977-11994. [23] R.H. Lacombe, I.C. Sanchez, Statistical thermodynamics of fluid mixtures, J. Phys. Chem. 80 (23) (1976) 2568-2580. [24] J. Gross, G. Sadowski, Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40 (4) (2001) 1244-1260. [25] N.P. Khare, K.C. Seavey, Y.A. Liu, S. Ramanathan, S. Lingard, C.C. Chen, Steady-state and dynamic modeling of commercial slurry high-density polyethylene (HDPE) processes, Ind. Eng. Chem. Res. 41 (23) (2002) 5601-5618. [26] Z.H. Luo, P.L. Su, D.P. Shi, Z.W. Zheng, Steady-state and dynamic modeling of commercial bulk polypropylene process of Hypol technology, Chem. Eng. J. 149 (1-3) (2009) 370-382. [27] Z.W. Zheng, D.P. Shi, P.L. Su, Z.H. Luo, X.J. Li, Steady-state and dynamic modeling of the basell multireactor olefin polymerization process, Ind. Eng. Chem. Res. 50 (1) (2011) 322-331. [28] S.X. Ruan, X.B. Zhang, Z.H. Luo, Steady-state and dynamic modeling of the solution polyethylene process based on rigorous PC-SAFT equation of state, Ind. Eng. Chem. Res. 61 (19) (2022) 6753-6762. [29] N.P. Khare, B. Lucas, K.C. Seavey, Y.A. Liu, A. Sirohi, S. Ramanathan, S. Lingard, Y.H. Song, C.C. Chen, Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors, Ind. Eng. Chem. Res. 43 (4) (2004) 884-900. [30] A. Shamiria, M.A. Hussaina, F. Mjallic, N. Mostoufid, Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models, Chem. Ind. Chem. Eng. Q. 19 (1) (2013) 13-24. [31] W.L. Luyben, Heat-exchanger Bypass control, Ind. Eng. Chem. Res. 50 (2011) 965-973. [32] N. Soave, M. Barolo, On the effectiveness of heat-exchanger bypass control, Processes 9 (2) (2021) 244. [33] R.F. Alves, T. Casalini, G. Storti, T.F.L. McKenna, Gas-phase polyethylene reactors-A critical review of modeling approaches, Macromol. React. Eng. 15 (3) (2021) 2000059. [34] I.C. Sanchez, R.H. Lacombe, Statistical thermodynamics of polymer solutions, Macromolecules 11 (6) (1978) 1145-1156. [35] P.A. Rodgers, I.C. Sanchez, Improvement to the lattice-fluid prediction of gas solubilities in polymer liquids, J. Polym. Sci. Part B Polym. Phys. 31 (3) (1993) 273-277. [36] K.B. McAuley, J.P. Talbot, T.J. Harris, A comparison of two-phase and well-mixed models for fluidized-bed polyethylene reactors, Chem. Eng. Sci. 49 (13) (1994) 2035-2045. [37] A. Lucas, J. Arnaldos, J. Casal, L. Puigjaner, Improved equation for the calculation of minimum fluidization velocity, Ind. Eng. Chem. Proc. Des. Dev. 25 (2) (1986) 426-429. [38] E. Mastan, S.P. Zhu, Method of moments: A versatile tool for deterministic modeling of polymerization kinetics, Eur. Polym. J. 68 (2015) 139-160. [39] N.V.S.N. Murthy Konda, G.P. Rangaiah, P.R. Krishnaswamy, Plantwide control of industrial processes: An integrated framework of simulation and heuristics, Ind. Eng. Chem. Res. 44 (22) (2005) 8300-8313. [40] S. Vasudevan, G.P. Rangaiah, Criteria for performance assessment of plantwide control systems, Ind. Eng. Chem. Res. 49 (19) (2010) 9209-9221. |