[1] Z.F. Li, Y.C. Chen, Z.L. Jian, H. Jiang, J.J. Razink, W.F. Stickle, J.C. Neuefeind, X.L. Ji, Defective hard carbon anode for Na-ion batteries, Chem. Mater. 30 (14) (2018) 4536-4542. [2] H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors, J. Power Sources 195 (21) (2010) 7452-7456. [3] Z.H. Guo, C.Y. Wang, M.M. Chen, M.W. Li, Hard carbon derived from coal tar pitch for use as the anode material in lithium ion batteries, Int. J. Electrochem. Sci. 8 (2) (2013) 2702-2709. [4] E. Irisarri, A. Ponrouch, M.R. Palacin, Review-hard carbon negative electrode materials for sodium-ion batteries, J. Electrochem. Soc. 162 (14) (2015) A2476-A2482. [5] D.Q. Chen, W. Zhang, K.Y. Luo, Y. Song, Y.J. Zhong, Y.X. Liu, G.K. Wang, B.H. Zhong, Z.G. Wu, X.D. Guo, Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization, Energy Environ. Sci. 14 (4) (2021) 2244-2262. [6] Y. Morikawa, S.I. Nishimura, R.I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis, Adv. Energy Mater. 10 (3) (2020) 1903176. [7] C.Z. Ge, Z.H. Fan, J. Zhang, Y.M. Qiao, J.M. Wang, L.C. Ling, Novel hard carbon/graphite composites synthesized by a facile in situ anchoring method as high-performance anodes for lithium-ion batteries, RSC Adv. 8 (60) (2018) 34682-34689. [8] T. Zheng, J.S. Xue, J.R. Dahn, Lithium insertion in hydrogen-containing carbonaceous materials, Chem. Mater. 8 (2) (1996) 389-393. [9] L.F. Zhao, Z. Hu, W.H. Lai, Y. Tao, J. Peng, Z.C. Miao, Y.X. Wang, S.L. Chou, H.K. Liu, S.X. Dou, Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts, Adv. Energy Mater. 11 (1) (2021) 2002704. [10] Y.Y. Yu, Q. Wei, F. Wang, S.H. Jiao, Z.P. Qiu, L.L. Wang, H. Liu, K. Chen, A.J. Guo, Carbonization characteristics of ethylene tar narrow fractions, J. Fuel Chem. Technol. 50 (3) (2022) 376-384. [11] Y.Y. Yu, F. Wang, B. Wiafe Biney, K.Q. Li, S.H. Jiao, K. Chen, H. Liu, A.J. Guo, Co-carbonization of ethylene tar and fluid catalytic cracking decant oil: development of high-quality needle coke feedstock, Fuel 322 (2022) 124170. [12] C.Z. Ge, Z.L. Sun, H.X. Yang, D.H. Long, W.M. Qiao, L.C. Ling, Preparation and characterization of high softening point and homogeneous isotropic pitches produced from distilled ethylene tar by a novel bromination method, N. Carbon Mater. 33 (1) (2018) 71-81. [13] C.Z. Ge, H.X. Yang, J.T. Wang, W.M. Qiao, D.H. Long, L.C. Ling, Highly effective utilization of ethylene tar for mesophase development via a molecular fractionation process, RSC Adv. 6 (1) (2016) 796-804. [14] K. Shi, J.X. Yang, C. Ye, H.B. Liu, X.K. Li, A comparison of ethylene-tar-derived isotropic pitches prepared by air blowing and nitrogen distillation methods and their carbon fibers, Materials 12 (2) (2019) 305. [15] M.B. Wu, Y.Y. Shi, S.B. Li, N. Guo, Y.W. Wang, J.T. Zheng, J.S. Qiu, Synthesis and characterization of condensed poly-nuclear aromatic resin using heavy distillate from ethylene tar, N. Carbon Mater. 27 (6) (2012) 469-475. [16] J.C. Liu, X.J. Chen, Q. Xie, D.C. Liang, Controllable synthesis of isotropic pitch precursor for general purpose carbon fiber using waste ethylene tar via bromination-dehydrobromination, J. Clean. Prod. 271 (2020) 122498. [17] R. Menendez, M. Granda, J.J. Fernandez, A. Figueiras, J. Bermejo, J. Bonhomme, J. Belzunce, Influence of pitch air-blowing and thermal treatment on the microstructure and mechanical properties of carbon/carbon composites, J. Microsc. 185 (2) (1997) 145-156. [18] C. Blanco, R. Santamaria, J. Bermejo, R. Menendez, A comparative study of air-blown and thermally treated coal-tar pitches, Carbon 38 (4) (2000) 517-523. [19] S. Otani, Mechanism of the carbonization of MP carbon fiber at the low temperature range, Carbon 5 (3) (1967) 219-225. [20] S.M. Zeng, T. Maeda, K. Tokumitsu, J. Mondori, I. Mochida, Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing-II. air blowing of coal tar, hydrogenated coal tar, and petroleum pitches, Carbon 31 (3) (1993) 413-419. [21] T. Maeda, S.M. Zeng, K. Tokumitsu, J. Mondori, I. Mochida, Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing-I. preparation of spinnable isotropic pitch precursor from coal tar by air blowing, Carbon 31 (3) (1993) 407-412. [22] J.B. Barr, I.C. Lewis, Chemical changes during the mild air oxidation of pitch, Carbon 16 (6) (1978) 439-444. [23] H. Niu, P.P. Zuo, W.Z. Shen, S.J. Qu, A comprehensive investigation on the chemical structure character of spinnable pitch for improving and optimizing the oxidative stabilization of coal tar pitch-based fiber, Polymer 224 (2021) 123737. [24] B.J. Yu, C.Y. Wang, M.M. Chen, J.M. Zheng, J. Qi, Two-step chemical conversion of coal tar pitch to isotropic spinnable pitch, Fuel Process. Technol. 104 (2012) 155-159. [25] I.C. Lewis, Thermal polymerization of aromatic hydrocarbons, Carbon 18 (3) (1980) 191-196. [26] M. S. Hosseini, P. Chartrand, Critical assessment of thermodynamic properties of important polycyclic aromatic hydrocarbon compounds (PAHs) in coal tar pitch at typical temperature ranges of the carbonization process, Calphad 74 (2021) 102278. [27] J. Wang, L. Yan, B.H. Liu, Q.J. Ren, L.L. Fan, Z.Q. Shi, Q.Y. Zhang, A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage, Chin. Chem. Lett. 34 (4) (2023) 107526. [28] D. Liu, B. Lou, G.K. Chang, Y.D. Zhang, R. Yu, Z.H. Li, C.C. Wu, M. Li, Q.T. Chen, Study on effect of cross-linked structures induced by oxidative treatment of aromatic hydrocarbon oil on subsequent carbonized behaviors, Fuel 231 (2018) 495-506. [29] R. Xu, Z.L. Yi, M.X. Song, J.P. Chen, X.X. Wei, F.Y. Su, L.Q. Dai, G.H. Sun, F. Yang, L.J. Xie, C.M. Chen, Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor, Carbon 206 (2023) 94-104. [30] Y.X. Lu, C.L. Zhao, X.G. Qi, Y.R. Qi, H. Li, X.J. Huang, L.Q. Chen, Y.S. Hu, Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance, Adv. Energy Mater. 8 (27) (2018) 1800108. [31] L.C. Ji, Y. Zhao, L.J. Cao, Y. Li, C.L. Ma, X.G. Qi, Z.P. Shao, A fundamental understanding of structure evolution in the synthesis of hard carbon from coal tar pitch for high-performance sodium storage, J. Mater. Chem. A 11 (48) (2023) 26727-26741. [32] I. Mochida, C.H. Ku, Y. Korai, Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches, Carbon 39 (3) (2001) 399-410. [33] P.Y. Zhao, J.J. Tang, C.Y. Wang, A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization, J. Solid State Electrochem. 21 (2) (2017) 555-562. [34] R.Q. Chen, Y.C. Guo, Y.Z. Zhang, C.Y. Shen, Y.L. Wang, L. Zhan, Reaction mechanism of ethylene tar in the air atmosphere, Fuel 353 (2023) 129146. [35] T.R. Guo, R.Q. Chen, W. Gao, Y.L. Wang, L. Zhan, The oxidation reaction mechanism and its kinetics for a carbonaceous precursor prepared from ethylene tar for use as an anode material for lithium-ion batteries, N. Carbon Mater. 39 (2) (2024) 354-366. [36] W.J. Zhang, T.H. Li, M. Lu, C.L. Hou, A comparative study of the characteristics and carbonization behaviors of three modified coal tar pitches, N. Carbon Mater. 28 (2) (2013) 140-144. [37] Y.S. Peng, J.X. Yang, K. Shi, J.G. Guo, H. Zhu, X.K. Li, Effects of the degree of oxidation of pitch fibers on their stabilization and carbonization behaviors, N. Carbon Mater. 35 (6) (2020) 722-730. [38] H.Y. Guo, Y.Y. Li, C.L. Wang, L. He, C. Li, Y.Q. Guo, Y. Zhou, Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons, N. Carbon Mater. 36 (6) (2021) 1073-1078. [39] H.A. Akrami, M.F. Yardim, A. Akar, E. Ekinci, FT-i.r. characterization of pitches derived from Avgamasya asphaltite and Raman-Dincer heavy crude, Fuel 76 (14-15) (1997) 1389-1394. [40] B. Muik, B. Lendl, A. Molina-Diaz, M.J. Ayora-Canada, Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy, Chem. Phys. Lipids 134 (2) (2005) 173-182. [41] J.J. Fernandez, A. Figueiras, M. Granda, J. Bermejo, R. Menendez, Modification of coal-tar pitch by air-blowing-I. variation of pitch composition and properties, Carbon 33 (3) (1995) 295-307. [42] K. Yanagisawa, T. Suzuki, Carbonization of oxidized mesophase pitches originating from petroleum and coal tar, Fuel 72 (1) (1993) 25-30. [43] J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation, Fuel 80 (1) (2001) 41-48. [44] B.H. Kim, J.H. Kim, J.G. Kim, M.J. Bae, J.S. Im, C.W. Lee, S. Kim, Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue, J. Ind. Eng. Chem. 41 (2016) 1-9. [45] S. Yoon, H. Kim, S.M. Oh, Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries, J. Power Sources 94 (1) (2001) 68-73. [46] S. Ko, J.E. Choi, C.W. Lee, Y.P. Jeon, Modified oxidative thermal treatment for the preparation of isotropic pitch towards cost-competitive carbon fiber, J. Ind. Eng. Chem. 54 (2017) 252-261. [47] B. Petrova, T. Budinova, N. Petrov, M.F. Yardim, E. Ekinci, M. Razvigorova, Effect of different oxidation treatments on the chemical structure and properties of commercial coal tar pitch, Carbon 43 (2) (2005) 261-267. [48] G.M. Yuan, X.K. Li, X.Q. Xiong, Z.J. Dong, A. Westwood, B.L. Li, C. Ye, G.Z. Ma, Z.W. Cui, Y. Cong, J. Zhang, Y.J. Li, A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen, Carbon 115 (2017) 59-76. [49] F. Fanjul, M. Granda, R. Santamaria, R. Menendez, On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase, Fuel 81 (16) (2002) 2061-2070. [50] H. Ghaedi, M. Ayoub, S. Sufian, B. Lal, Y. Uemura, Thermal stability and FT-IR analysis of Phosphonium-based deep eutectic solvents with different hydrogen bond donors, J. Mol. Liq. 242 (2017) 395-403. [51] T. Kondratenko, O. Ovchinnikov, I. Grevtseva, M. Smirnov, O. Erina, V. Khokhlov, B. Darinsky, E. Tatianina, Thioglycolic acid FTIR spectra on Ag2S quantum dots interfaces, Materials 13 (4) (2020) 909. [52] G.M.S. El-Bahy, FTIR and Raman spectroscopic study of Fenugreek (Trigonella foenum graecum L.) seeds, J. Appl. Spectrosc. 72 (1) (2005) 111-116. [53] M.D. Guillen, C. Diaz, C.G. Blanco, Characterization of coal tar pitches with different softening points by 1 H NMR Role of the different kinds of protons in the thermal process, Fuel Process. Technol. 58 (1) (1998) 1-15. [54] C. Diaz, C.G. Blanco, NMR: a powerful tool in the characterization of coal tar pitch, Energy Fuels 17 (4) (2003) 907-913. [55] S.J. Lee, M. Nishizawa, I. Uchida, Fabrication of mesophase pitch carbon thin film electrodes and the effect of heat treatment on electrochemical lithium insertion and extraction, Electrochim. Acta 44 (14) (1999) 2379-2383. [56] L.B. Ebert, J.C. Scanlon, D.R. Mills, X-ray diffraction of n-paraffins and stacked aromatic molecules: insights into the structure of petroleum asphaltenes, Liq. Fuel. Technol. 2 (3) (1984) 257-286. [57] H.L. Zhang, S.H. Liu, F. Li, S. Bai, C. Liu, J. Tan, H.M. Cheng, Electrochemical performance of pyrolytic carbon-coated natural graphite spheres, Carbon 44 (11) (2006) 2212-2218. [58] B.H. Kim, J.H. Kim, J.G. Kim, J.S. Im, C.W. Lee, S. Kim, Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries, J. Ind. Eng. Chem. 45 (2017) 99-104. [59] N. Shimodaira, M.S. A, Raman spectroscopic investigations of activated carbon materials, 92 (2) (2002) 902-909. [60] S. Potgieter-Vermaak, N. Maledi, N. Wagner, J.H.P. Van Heerden, R. Van Grieken, J.H. Potgieter, Raman spectroscopy for the analysis of coal: a review, J. Raman Spectrosc. 42 (2) (2011) 123-129. [61] C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel 86 (15) (2007) 2316-2324. [62] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information, Carbon 43 (8) (2005) 1731-1742. [63] Y. Wang, D.C. Alsmeyer, R.L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater. 2 (5) (1990) 557-563. [64] J. Xu, H. Tang, S. Su, J.W. Liu, K. Xu, K. Qian, Y. Wang, Y.B. Zhou, S. Hu, A.C. Zhang, J. Xiang, A study of the relationships between coal structures and combustion characteristics: the insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals, Appl. Energy 212 (2018) 46-56. [65] O. Beyssac, B. Goffe, J.P. Petitet, E. Froigneux, M. Moreau, J.N. Rouzaud, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim. Acta Mol. Biomol. Spectrosc. 59 (10) (2003) 2267-2276. [66] Y.A. Abdu, Raman micro-spectroscopy of nanodiamonds from the Kapoeta meteorite, Diam. Relat. Mater. 118 (2021) 108536. [67] T. Lopez-Rios, E. Sandre, S. Leclercq, E. Sauvain, Polyacetylene in diamond films evidenced by surface enhanced Raman scattering, Phys. Rev. Lett. 76 (26) (1996) 4935-4938. [68] A. C. Ferrari, J. Robertson, Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond, Phys. Rev. B 63 (12) (2001) 121405. [69] X.J. Li, J.I. Hayashi, C.Z. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel 85 (12-13) (2006) 1700-1707. [70] J. Xu, X.R. Xiang, K. Xu, L.M. He, H.D. Han, S. Su, Y. Wang, S. Hu, J. Xiang, Developing micro-Raman spectroscopy for char structure characterization in the scale of micro- and bulk: a case study of Zhundong coal pyrolysis, Fuel 291 (2021) 120168. [71] M. Shi, Y.Z. Chen, H. Wen, Y.N. Liu, One-step heat treatment to process semi-coke powders as an anode material with superior rate performance for Li-ion batteries, RSC Adv. 8 (72) (2018) 41207-41217. [72] I.C. Lewis, Chemistry of pitch carbonization, Fuel 66 (11) (1987) 1527-1531. [73] L. Bokobza, J.L. Bruneel, M. Couzi, Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black, Chem. Phys. Lett. 590 (2013) 153-159. [74] B. Lou, D. Liu, Y.J. Duan, X.L. Hou, Y.D. Zhang, Z.H. Li, Z.W. Wang, M. Li, Structural modification of petroleum pitch induced by oxidation treatment and its relevance to carbonization behaviors, Energy Fuels 31 (9) (2017) 9052-9066. [75] E.R. Vorpagel, J.G. Lavin, Most stable configurations of polynuclear aromatic hydrocarbon molecules in pitches via molecular modelling, Carbon 30 (7) (1992) 1033-1040. [76] I. Mochida, S.H. Yoon, Y. Korai, Mesoscopic structure and properties of liquid crystalline mesophase pitch and its transformation into carbon fiber, Chem. Rec. 2 (2) (2002) 81-101. [77] P.C. Chen, S. Fatayer, B. Schuler, J.N. Metz, L. Gross, N. Yao, Y.L. Zhang, The role of methyl groups in the early stage of thermal polymerization of polycyclic aromatic hydrocarbons revealed by molecular imaging, Energy Fuels 35 (3) (2021) 2224-2233. [78] L. Zhang, C.J. Liu, Y. Jia, Y.D. Mu, Y. Yan, P.C. Huang, Pyrolytic modification of heavy coal tar by multi-polymer blending: preparation of ordered carbonaceous mesophase, Polymers 16 (1) (2024) 161. [79] A. Jana, L.T. Kearney, A.K. Naskar, J.C. Grossman, N. Ferralis, Effect of methyl groups on formation of ordered or layered graphitic materials from aromatic molecules, Small 19 (43) (2023) e2302985. [80] A. Annamraju, G.S. Jung, S. Bhagia, J.T. Damron, M.R. Ryder, M.A. Arnould, E. Cakmak, F. Vautard, R.M. Paul, S. Irle, N.C. Gallego, E.L. Curzio, On the role of methyl groups in the molecular architectures of mesophase pitches, Fuel 357 (2024) 129976. [81] R. E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons, Proc. Roy. Soc. Lond. A 209 (1097) (1951) 196-218. |