[1] S.B. Wang, H.M. Ang, M.O. Tade, Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes, Chemosphere 72(11) (2008) 1621-1635. [2] X.F. Kong, M. Li, S.G. Xue, W. Hartley, C.R. Chen, C. Wu, X.F. Li, Y.W. Li, Acid transformation of bauxite residue: conversion of its alkaline characteristics, J. Hazard Mater. 324(Pt B) (2017) 382-390. [3] M.F. Wang, X.M. Liu, Applications of red mud as an environmental remediation material: a review, J. Hazard Mater. 408(2021) 124420. [4] Y. Pontikes, G.N. Angelopoulos, Bauxite residue in cement and cementitious applications: current status and a possible way forward, Resour. Conserv. Recycl. 73(2013) 53-63. [5] X.W. Cheng, D. Long, C. Zhang, X.S. Gao, Y.J. Yu, K.Y. Mei, C.M. Zhang, X.Y. Guo, Z.W. Chen, Utilization of red mud, slag and waste drilling fluid for the synthesis of slag-red mud cementitious material, J. Clean. Prod. 238(2019) 117902. [6] P.F. Wu, X.M. Liu, Z.Q. Zhang, C. Wei, J. Wang, J.R. Gu, The harmless and value-added utilization of red mud: recovering iron from red mud by pyrometallurgy and preparing cementitious materials with its tailings, J. Ind. Eng. Chem. 132(2024) 50-65. [7] M. Samouhos, M. Taxiarchou, P.E. Tsakiridis, K. Potiriadis, Greek “red mud” residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process, J. Hazard Mater. 254-255(2013) 193-205. [8] R.B. Li, T.A. Zhang, Y. Liu, G.Z. Lv, L.Q. Xie, Calcification-carbonation method for red mud processing, J. Hazard Mater. 316(2016) 94-101. [9] D.Y. Wei, J.H. Xiao, Y. Peng, S.Y. Shen, C. Tao, K. Zou, Z. Wang, Extraction of scandium and iron from red mud, Miner. Process. Extr. Metall. Rev. 43(2020) 61-68. [10] Y.M. Hua, K.V. Heal, W. Friesl-Hanl, The use of red mud as an immobiliser for metal/metalloid-contaminated soil: a review, J. Hazard Mater. 325(2017) 17-30. [11] J. Yang, H.F. Qi, A.Q. Li, X.Y. Liu, X.F. Yang, S.X. Zhang, Q. Zhao, Q.K. Jiang, Y. Su, L.L. Zhang, J.F. Li, Z.Q. Tian, W. Liu, A.Q. Wang, T. Zhang, Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia, J. Am. Chem. Soc. 144(27) (2022) 12062-12071. [12] F.Y. Chen, Z.Y. Wu, S. Gupta, D.J. Rivera, S.V. Lambeets, S. Pecaut, J.Y.T. Kim, P. Zhu, Y.Z. Finfrock, D.M. Meira, G. King, G. Gao, W. Xu, D.A. Cullen, H. Zhou, Y. Han, D.E. Perea, C.L. Muhich, H. Wang, Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst, Nat. Nanotechnol. 17(7) (2022) 759-767. [13] Z.Y. Wu, Y.H. Song, H.C. Guo, F.T. Xie, Y.T. Cong, M. Kuang, J.P. Yang, Tandem catalysis in electrocatalytic nitrate reduction: unlocking efficiency and mechanism, Interdiscip. Mater. 3(2) (2024) 245-269. [14] L. Liu, S.J. Zheng, H. Chen, J.M. Cai, S.Q. Zang, Tandem nitrate-to-ammonia conversion on atomically precise silver nanocluster/MXene electrocatalyst, Angew. Chem. Int. Ed 63(8) (2024) e202316910. [15] T.H. Ding, M.L. Wang, F.J. Wu, B. Song, K. Lu, H. Zhang, Recent advances in electrocatalytic nitrate reduction: strategies to promote ammonia synthesis, ACS Appl. Energy Mater. (2024). https://doi.org/10.1021/acsaem.3c02892. [16] K. Dong, Y.C. Yao, H.B. Li, H. Li, S.J. Sun, X. He, Y. Wang, Y.S. Luo, D.D. Zheng, Q. Liu, Q. Li, D.W. Ma, X.P. Sun, B. Tang, H2O2-mediated electrosynthesis of nitrate from air, Nat. Synth. 3(2024) 763-773. [17] Y.Y. Wan, Y. Zhang, N.N. Zhang, Z.Y. Zhang, K. Chu, Single-atom Zn on MnO2 for selective nitrite electrolysis to ammonia, Chem. Eng. J. 481(2024) 148734. [18] Z. Zhang, A. Niu, Y. Lv, H. Guo, J.S. Chen, Q. Liu, K. Dong, X. Sun, T. Li, NbC nanoparticles decorated carbon nanofibers as highly active and robust heterostructural electrocatalysts for ammonia synthesis, Angew. Chem. Int. Ed 63(30) (2024) e202406441. [19] X.Y. Fan, C.Z. Liu, Z.X. Li, Z.W. Cai, L. Ouyang, Z.R. Li, X. He, Y.S. Luo, D.D. Zheng, S.J. Sun, Y. Wang, B.W. Ying, Q. Liu, A. Farouk, M.S. Hamdy, F. Gong, X.P. Sun, Y.Y. Zheng, Pd-doped Co3 O4 nanoarray for efficient eight-electron nitrate electrocatalytic reduction to ammonia synthesis, Small 19(42) (2023) e2303424. [20] Y.T. Wang, W. Zhou, R.R. Jia, Y.F. Yu, B. Zhang, Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia, Angew. Chem. Int. Ed 59(13) (2020) 5350-5354. [21] R.R. Jia, Y.T. Wang, C.H. Wang, Y.F. Ling, Y.F. Yu, B. Zhang, Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2, ACS Catal. 10(6) (2020) 3533-3540. [22] Y.T. Wang, C.H. Wang, M.Y. Li, Y.F. Yu, B. Zhang, Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges, Chem. Soc. Rev. 50(12) (2021) 6720-6733. [23] B. Min, Q. Gao, Z.H. Yan, X. Han, K. Hosmer, A. Campbell, H.Y. Zhu, Powering the remediation of the nitrogen cycle: progress and perspectives of electrochemical nitrate reduction, Ind. Eng. Chem. Res. 60(41) (2021) 14635-14650. [24] J.A. Bennett, K. Wilson, A.F. Lee, Catalytic applications of waste derived materials, J. Mater. Chem. A 4(10) (2016) 3617-3637. [25] Z. Zhang, T. Wang, J. Song Chen, K. Dong, S. Sun, Y. Luo, H. Guo, X. Sun, T. Li, Cr3C2 nanoparticles decorated carbon nanofibers for efficient nitrate reduction to ammonia at ambient conditions, J. Colloid Interface Sci. 648(2023) 693-700. [26] P.J. Hu, X.Q. Zhang, M. Xu, Y.X. Lv, H.R. Guo, J.S. Chen, X.Y. Ye, H.H. Xian, X.P. Sun, T.S. Li, In-situ exsolution of FeCo nanoparticles over perovskite oxides for efficient electrocatalytic nitrate reduction to ammonia via localized electrons, Appl. Catal. B Environ. Energy 357(2024) 124267. [27] Z. Tao, H. Yin, Y. Lv, H. Guo, J.S. Chen, X. Ye, H. Xian, S. Sun, T. Li, Crystalline modulation of zirconia for efficient nitrate reduction to ammonia under ambient conditions, Chem. Commun. 60(42) (2024) 5554-5557. [28] T. Xie, X. He, L. He, K. Dong, Y.C. Yao, Z.W. Cai, X.W. Liu, X.Y. Fan, T.Y. Li, D.D. Zheng, S.J. Sun, L.M. Li, W. Chu, A. Farouk, M.S. Hamdy, C.G. Xu, Q.Q. Kong, X.P. Sun, CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis, Chin. Chem. Lett. 35(11) (2024) 110005. [29] J. Liang, Z.X. Li, L.C. Zhang, X. He, Y.S. Luo, D.D. Zheng, Y. Wang, T.S. Li, H. Yan, B.W. Ying, S.J. Sun, Q. Liu, M.S. Hamdy, B. Tang, X.P. Sun, Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction, Chem 9(7) (2023) 1768-1827. [30] H.R. Zhang, H.J. Wang, X.Q. Cao, M.S. Chen, Y.L. Liu, Y.T. Zhou, M. Huang, L. Xia, Y. Wang, T.S. Li, D.D. Zheng, Y.S. Luo, S.J. Sun, X. Zhao, X.P. Sun, Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion, Adv. Mater. 36(16) (2024) e2312746. [31] L. Qi, Z.G. Sun, Q. Tang, J. Wang, T.Z. Huang, C.Z. Sun, F. Gao, C.J. Tang, L. Dong, Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH3, J. Hazard Mater. 396(2020) 122459. [32] S.Q. Zhang, C. Zhang, Q. Wang, W.S. Ahn, Co- and Mn-coimpregnated ZSM-5 prepared from recycled industrial solid wastes for low-temperature NH3-SCR, Ind. Eng. Chem. Res. 58(51) (2019) 22857-22865. [33] Y.T. Xu, K.C. Ren, Z.M. Tao, D.K. Sam, E.L. Feng, X. Wang, G.M. Zhang, J.C. Wu, Y. Cao, A new catalyst based on disposed red mud for the efficient electrochemical reduction of nitrate-to-ammonia, Green Chem. 25(2) (2023) 589-595. [34] Y.T. Xu, M.Y. Xie, H.Q. Zhong, Y. Cao, In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction, ACS Catal. 12(14) (2022) 8698-8706. |