[1] M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity, Sci. Adv. 2(2) (2016) e1500323. [2] C.Y. He, Z.F. Liu, J.G. Wu, X.H. Pan, Z.H. Fang, J.W. Li, B.A. Bryan, Future global urban water scarcity and potential solutions, Nat. Commun. 12(1) (2021) 4667. [3] A. Boretti, L. Rosa, Reassessing the projections of the world water development report, NPJ Clean Water 2(2019) 15. [4] W. Musie, G. Gonfa, Fresh water resource, scarcity, water salinity challenges and possible remedies: a review, Heliyon 9(8) (2023) e18685. [5] J. Han, C.Q. Wang, S.H. Deng, E. Lichtfouse, China’s sponge cities alleviate urban flooding and water shortage: a review, Environ. Chem. Lett. 21(3) (2023) 1297-1314. [6] M.D. Wang, P.H. Zhang, X. Liang, J.Y. Zhao, Y.W. Liu, Y. Cao, H.J. Wang, Y. Chen, Z.M. Zhang, F.S. Pan, Z.J. Zhang, Z.Y. Jiang, Ultrafast seawater desalination with covalent organic framework membranes, Nat. Sustain. 5(6) (2022) 518-526. [7] C. Fritzmann, J. Lowenberg, T. Wintgens, T. Melin, State-of-the-art of reverse äosmosis desalination, Desalination 216(1-3) (2007) 1-76. [8] N. Akther, A. Sodiq, A. Giwa, S. Daer, H.A. Arafat, S.W. Hasan, Recent advancements in forward osmosis desalination: a review, Chem. Eng. J. 281(2015) 502-522. [9] S. Al-Amshawee, M.Y. Bin Mohd Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H. Abu Hasan, Electrodialysis desalination for water and wastewater: a review, Chem. Eng. J. 380(2020) 122231. [10] M. Al-Obaidi, A.A. Alsarayreh, F.L. Rashid, M.T. Sowgath, S. Alsadaie, A. RuizGarcía, M. Khayet, N. Ghaffour, I.M. Mujtaba, Hybrid membrane and thermal seawater desalination processes powered by fossil fuels: a comprehensive review, future challenges and prospects, Desalination 583(2024) 117694. [11] S.M.J. Seyed Sabour, B. Ghorashi, A comprehensive review of major water desalination techniques and mineral extraction from saline water, Sep. Purif. Technol. 349(2024) 127913. [12] M.M. Al-Rajabi, F.A. Abumadi, T. Laoui, M. Ali Atieh, K.A. Khalil, Capacitive deionization for water desalination: cost analysis, recent advances, and process optimization, J. Water Process Eng. 58(2024) 104816. [13] J.H. Feng, S. Xiong, L. Ren, Y. Wang, Atomic layer deposition of TiO2 on carbonnanotubes membrane for capacitive deionization removal of chromium from water, Chin. J. Chem. Eng. 45(2022) 15-21. [14] X.N. Liu, B.H. Zhao, Y.Y. Hu, L.Y. Huang, J.X. Ma, S.Q. Xu, Z.L. Xia, X.Y. Ma, S.C. Ma, Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials, Chin. J. Chem. Eng. 69(2024) 23-33. [15] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci. 58(8) (2013) 1388-1442. [16] J.C. Wang, C. Liu, S.K. Ding, Y.C. Yang, Capacitive deionization in water treatment: a review of reactor dynamics, electrode materials, functional membranes, and modeling techniques, Desalination 600(2025) 118459. [17] Q.L. Luo, K.K. Wang, Y. Yang, H.Y. Guo, R.W. Wang, Y. Song, D.X. Ji, Constructing interconnected hierarchical porous structures and nitrogen-doped carbon nanofibers for superior capacitive deionization, J. Colloid Interface Sci. 681(2025) 95-105. [18] C.Y. Gong, Z.Y. Chen, W.S. Geng, Z. Fu, C. Chen, Y.X. Zhang, G.Z. Wang, Controlled fabrication of nitrogen-doped porous carbon foam with refined hierarchical architectures for desalination via capacitive deionization, J. Colloid Interface Sci. 643(2023) 516-527. [19] R.N. Zhang, X. Gu, Y.H. Liu, D. Hua, M. Shao, Z.D. Gu, J.S. Wu, B. Zheng, W.N. Zhang, S. Li, F.W. Huo, W. Huang, Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization, Appl. Surf. Sci. 512(2020) 145740. [20] J.P. Zhang, X.N. Ning, D.P. Li, Y. Wang, X.J. Lai, W.X. Ou, Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization, J. Environ. Sci. 111(2022) 282-291. [21] J. Ma, C.X. Zhai, F. Yu, Review of flow electrode capacitive deionization technology: research progress and future challenges, Desalination 564(2023) 116701. [22] Y.M. Cai, F. Zhao, J.S. Zhao, Y. Wang, Flexible construction of threedimensional continuous conductive structure by hollow carbon sphere and CNT for promoted ions transport in flow-electrode capacitive deionization, Sep. Purif. Technol. 337(2024) 126405. [23] J. Wang, Z.L. Shi, J. Fang, B.L. Chu, N. Li, L.L. Shui, G.N. Wang, F.M. Chen, The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron, Sep. Purif. Technol. 281(2022) 119345. [24] S. Sasi, A. Murali, S.V. Nair, A.S. Nair, K.R.V. Subramanian, The effect of graphene on the performance of an electrochemical flow capacitor, J. Mater. Chem. A 3(6) (2015) 2717-2725. [25] Y.F. Wang, L. Zhang, H.Q. Hou, W.H. Xu, G.G. Duan, S.J. He, K.M. Liu, S.H. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review, J. Mater. Sci. 56(1) (2021) 173-200. [26] R.Y. Yang, X. Xu, J. Teng, Y.Q. Zhang, Y.G. Xue, M. Shen, X.F. Liu, Porous carbon flow-electrode derived from modified MOF-5 for capacitive deionization, Desalination 569(2024) 117077. [27] Z.J. Cui, H.H. Wang, C.L. Li, W.C. Peng, J.P. Liu, Synergy of structural engineering and dual-heteroatoms co-doping engineering boosting porous carbon toward efficient capacitive deionization, Desalination 572(2024) 117122. [28] Z.J. Tan, W.C. Song, X.L. Mao, L. Wang, J.H. Xu, H. Zou, G.S. Liu, Efficient capacitive deionization with hierarchical porous carbon flow electrodes, Desalination 591(2024) 118051. [29] P.F. Liu, W.Q. Du, X.J. Liu, L. Zhang, Z.M. Chen, Sustainable catalytic graphitization of biomass to graphitic porous carbon by constructing permeation network with organic ligands, Chin. J. Chem. Eng. 64(2023) 259-270. [30] Z.Y. Pang, G.S. Li, X.L. Xiong, L. Ji, Q. Xu, X.L. Zou, X.G. Lu, Molten salt synthesis of porous carbon and its application in supercapacitors: a review, J. Energy Chem. 61(2021) 622-640. [31] Q. Zhang, P. Yue, M.Y. Jia, J.L. Jia, Y.F. Ren, G.W. Li, J.F. Sun, L.R. Hou, M. Chen, C. Z. Yuan, Construction of honeycomb-like N-doped porous carbon framework with effective aperture distribution toward advanced supercapacitors and sodium-ion batteries, Chem. Eng. J. 500(2024) 156779. [32] Y. Sun, X.X. Li, J.H. Sun, Z.H. Ren, Molten salt-mediated hierarchical porous carbon derived from biomass waste for high-performance capacitive storage, J. Power Sources 618(2024) 235216. [33] Z.R. Wang, X.H. Huang, Y. Tong, D.Y. Qin, T. Wang, Q. Liu, G.Z. Hu, N, P-doping tuning the coordination structure of carbon electrode for efficiency of copper ions capacitance deionization, Desalination 571(2024) 117062. [34] Y.S. Xu, Y. Gao, S.H. Xiang, J.G. Zhou, F. Liu, Z.L. Li, H.J. Zhou, Selective pseudocapacitive separation of zinc ions via silk cocoon derived N-doped porous carbon, Desalination 546(2023) 116220. [35] T. Alves, W.S. Mota, C. Barros, D. Almeida, D. Komatsu, A. Zielinska, J.C. Cardoso, P. Severino, E.B. Souto, M.V. Chaud, Review of scientific literature and standard guidelines for the characterization of graphene-based materials, J. Mater. Sci. 59(32) (2024) 14948-14980. [36] A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electronephonon coupling, doping and nonadiabatic effects, Solid State Commun. 143(1-2) (2007) 47-57. [37] R. Alexander, A. Kaushal, P.T. Rao, J. Prakash, K. Dasgupta, Identification and classification of disordered carbon materials in a composite matrix through machine learning approach integrated with Raman mapping, Diam. Relat. Mater. 142(2024) 110741. [38] W.C. Yue, Z.S. Yu, X.K. Zhang, H.Y. Liu, J.J. Li, Y.J. Zhang, X.Q. Ma, Preparation of micropores-rich carbon materials for high energy density aqueous supercapacitors using bio-templates and green N-doping strategy, Appl. Surf. Sci. 685(2025) 162100. [39] J. Liu, K. Zhang, H.Y. Wang, L. Lin, J. Zhang, P. Li, Q. Zhang, J.Y. Shi, H. Cui, Advances in micro-/mesopore regulation methods for plant-derived carbon materials, Polymers 14(20) (2022) 4261. [40] W.N. Li, X.P. Lu, B.W. Biney, J.F. Li, Y.C. Yan, K. Chen, In-situ synthesis of heteroatom-doped hard carbon for sodium-ion batteries: dual benefits for green energy and environment, J. Colloid Interface Sci. 677(2025) 312-322. [41] S. Wu, X.T. Yan, X. Sun, S. Tian, J.J. Wang, C.Y. Liu, S.Q. Sun, L. Wu, X.F. Zhao, Q. L. Yang, S, N Co-doped porous carbon materials for high performance supercapacitor, J. Energy Storage 71(2023) 108152. [42] C.J. Zhao, G.Q. Liu, N. Sun, X. Zhang, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Biomass-derived N-doped porous carbon as electrode materials for Znair battery powered capacitive deionization, Chem. Eng. J. 334(2018) 1270-1280. [43] Y.L. Zhou, W. Yan, X.Y. Yu, T.T. Chen, S.R. Wang, W.G. Zhao, Boron and nitrogen Co-doped porous carbon for supercapacitors: a comparison between a microwave-assisted and a conventional hydrothermal process, J. Energy Storage 32(2020) 101706. [44] J. Elisadiki, T.E. Kibona, R.L. Machunda, M.W. Saleem, W.S. Kim, Y.A.C. Jande, Biomass-based carbon electrode materials for capacitive deionization: a review, Biomass Convers. Biorefin. 10(4) (2020) 1327-1356. [45] J.X. Ma, C. He, D. He, C.Y. Zhang, T. David Waite, Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI, Water Res. 144(2018) 296-303. [46] X.Z. Yang, H.N. Wen, Y. Lin, H.Y. Zhang, Y. Liu, J.J. Fu, Q. Liu, G.B. Jiang, Emerging research needs for characterizing the risks of global lithium pollution under carbon neutrality strategies, Environ. Sci. Technol. 57(13) (2023) 5103-5106. |