[1] X. Zhang, Z.Y. Ji, F. Liu, Y.Y. Zhao, J. Liu, S.Z. Wang, F. Li, X.F. Guo, J. Wang, J.S. Yuan, Investigation of electrochemical oxidation technology for selective bromine extraction in comprehensive utilization of concentrated seawater, Sep. Purif. Technol. 248(2020) 117108. [2] I. Cohen, B. Shapira, E. Avraham, A. Soffer, D. Aurbach, Bromide ions specific removal and recovery by electrochemical desalination, Environ. Sci. Technol. 52(11) (2018) 6275-6281. [3] R.L. Guan, J.L. Wu, Research progress of bromine resources and main extraction techniques, J. Green Sci. Technol. 23(16) (2021) 223-227. [4] Y.X. Hou, Y. Wu, Y. Li, H.F. Guo, X.W. Liu, X.Q. Chen, J.L. Cao, Study on the phase equilibrium of the ternary NaCleNaBreCH3OH system at 298 and 313 K for the separation of NaCl and NaBr from the solid solution Na(Cl, Br), J. Chem. Eng. Data 66(6) (2021) 2501-2511. [5] Y.B. Weng, Y.F. Wang, J.K. Wang, Q.X. Yin, Phase diagram of the ternary system KCleKBr-H2O at 298, 313 and 333 K, J. Chem. Eng. Chin. Univ. 21(4) (2007) 695-698. [6] Y.B. Weng, J.K. Wang, Q.X. Yin, Y.F. Wang, Solideliquid equilibria in the ternary system NaCleNaBr-H2O, Petrochem. Technol. 36(4) (2007) 358-361. [7] Y.L. Zhang, Y. Li, H.F. Guo, X.W. Liu, D. Xu, J.L. Cao, Solubility measurement and calculation of the quaternary system KCleKBreNaCleNaBr-H2O at 323.15 K, J. Chem. Eng. Data 68(12) (2023) 3467-3475. [8] R.Z. Cui, S.H. Sang, F.M. Hu, X.L. Zeng, Phase equilibria in the quaternary system of Na+, K+//Cl, Br -H2O at 348 K, J. Mineral. Petrol. 32(2012) 116-120. [9] Y.L. Zhang, Y. Li, H.F. Guo, J.L. Cao, Solideliquid equilibrium in the ternary MgBr2-MgSO4-H2O system at 348.15 K and its application, J. Chem. Eng. Data 66(10) (2021) 3757-3764. [10] Y.L. Zhang, Y. Li, H.F. Guo, X.W. Liu, J.L. Cao, Phase equilibria in the quaternary KBreMgBr2-K2SO4-MgSO4-H2O system at (323.15 and 348.15) K, J. Chem. Thermodyn. 177(2023) 106932. [11] Y.L. Zhang, Y. Li, H.F. Guo, X.W. Liu, J.L. Cao, Solid-liquid equilibria in the ternary NaBr-Na2CO3-H2O system at (298.15, 323.15 and 368.15) K and its application, J. Chem. Thermodyn. 173(2022) 106839. [12] Institute of Qinghai Salt-Lakes, Chinese Academy of Sciences, Analytical Methods of Brines and Salts, second ed., Science Press, Beijing, 1988. (in Chinese) [13] S.P. Pinho, E.A. Macedo, Experimental measurement and modelling of KBr solubility in water, methanol, ethanol, and its binary mixed solvents at different temperatures, J. Chem. Thermodyn. 34(3) (2002) 337-360. [14] O. Sohnel, P. Novotny, Densities of Aqueous Solutions of Inorganic Substances, äElsevier, Amsterdam, 1985. [15] S.P. Pinho, E.A. Macedo, Solubility of NaCl, NaBr, and KCl in water, methanol, ethanol, and their mixed solvents, J. Chem. Eng. Data 50(1) (2005) 29. [16] T.L. Deng, H. Zhou, X. Chen, SalteWater System Phase Diagrams and Applications, Chemical Industry Press, Beijing, 2020. (in Chinese) [17] Y.B. Weng, Study on Phase Equilibria of the Quinary System Na+, K+, Mg2+// Cl, Br-H2O, Ph. D. Thesis, Tianjin University, Tianjin, China, 2008. [18] L.Z. Meng, D. Li, T.L. Deng, Y.F. Guo, Y. Ma, Measurement and thermodynamic model study on equilibrium solubility in the aqueous system of magnesium chloride and magnesium bromide, Calphad 43(2013) 105-111. [19] L.Z. Meng, D. Li, C.Y. Ma, K.X. Liu, Measurement and thermodynamic model study on equilibrium solubility in the ternary system KCl-KBr-H2O at 323.15 K, Russ. J. Phys. Chem. 88(13) (2014) 2283-2288. [20] Y.X. Hu, S.H. Sang, R.Z. Cui, S.Y. Zhong, Solideliquid equilibria in the ternary system KCleKBr-H2O at 348 K, J. Chem. Eng. Data 59(3) (2014) 802-806. [21] Y.X. Hu, S.H. Sang, R.Z. Cui, S.Y. Zhong, Phase equilibria in the ternary system KCleKBr-H2O at 373 K, China Science pap 8(9) (2013) 847-850. [22] S.H. Sang, R.Z. Cui, Y.X. Hu, X.X. Zeng, Measurements and calculations of solideliquid equilibria in the ternary system NaCleNaBr-H2O at 323 K, J. Solut. Chem. 43(12) (2014) 2133-2143. [23] S.H. Sang, R.Z. Cui, Q. Liu, X.X. Zeng, W.Y. Huang, Phase equilibrium of a KCleKBr-H2O ternary system at 323 K, J. Chem. Eng. Chin. Univ. 30(2) (2016) 472-476. [24] L.Z. Meng, D. Li, T.L. Deng, Y.F. Guo, Y. Wang, Solubility calculation for the brine system Na+, K+//Cle, Bre-H2O using pitzer thermodynamic model, J. Chem. Eng. Jpn. 51(3) (2018) 185-189. [25] J. Ananthaswamy, G. Atkinson, Thermodynamics of concentrated electrolyte mixtures. 4. Pitzer-Debye-Hueckel limiting slopes for water from 0 to 100.degree.C and from 1 atm to 1 kbar, J. Chem. Eng. Data 29(1) (1984) 81-87. [26] C. Christov, An isopiestic study of aqueous NaBr and KBr at 50 C: chemical equilibrium model of solution behavior and solubility in the NaBr-H2O, KBr-H2O and NaeKeBr-H2O systems to high concentration and temperature, Geochem. Cosmochim. Acta 71(14) (2007) 3557-3569. [27] J.P. Greenberg, N. Møller, The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 C, Geochem. Cosmochim. Acta 53(10) (1989) 2503-2518. [28] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77(2) (1973) 268-277. [29] K.S. Pitzer, G. Mayorga, Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77(19) (1973) 2300-2308. [30] Y.L. Zhang, Y. Li, H.F. Guo, X.W. Liu, D. Xu, J.L. Cao, Solideliquid equilibria in the quinary system KCleKBreNaCleNaBr-H2O at 298.15 K and its application, Ind. Eng. Chem. Res. 62(44) (2023) 18750-18758. |