[1] J.G. Yates, P. Lettieri, Fluidized-Bed Reactors: Processes and Operating Conditions. Springer International Publishing, (2016). [2] M. Ye, et al., MTO processes development: the key of mesoscale studies, Advances in Chemical Engineering, vol. 47, Academic Press, 2015, 279-335. [3] R.T. Feng, J.G. Li, Z.H. Cheng, X. Yang, Y.T. Fang, Influence of particle size distribution on minimum fluidization velocity and bed expansion at elevated pressure, Powder Technol. 320 (2017) 27-36. [4] Y.B. Lin, Q.H. Wang, C. Ye, Y. Zhu, H.J. Fan, Experimental research on the gas-solid flow characteristics in large-scale dual fluidized bed reactor, Energies 16 (21) (2023) 7239. [5] G.M. Karthik, V.V. Buwa, Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed, AlChE. J. 63 (1) (2017) 366-377. [6] P. Rossger, A. Richter, Numerical modeling of a batch fluidized-bed gasifier: Interaction of chemical reaction, particle morphology development and hydrodynamics, Powder Technol. 384 (2021) 148-159. [7] J.T. Garcia-Sanchez, V.G. Baldovino-Medrano, Elements of the manufacture and properties of technical catalysts, Ind. Eng. Chem. Res. 62 (20) (2023) 7769-7838. [8] M. Rasteh, F. Farhadi, G. Ahmadi, Empirical models for minimum fluidization velocity of particles with different size distribution in tapered fluidized beds, Powder Technol. 338 (2018) 563-575. [9] R. Timsina, R.K. Thapa, B.M.E. Moldestad, M.S. Eikeland, Effect of particle size on flow behavior in fluidized beds, Int. J. EQ 4 (4) (2019) 287-297. [10] Y. Shao, B. Jin, W. Zhong, H.Hu, C. Sha, Study on the shape effect of irregular particles mixing behavior in a fluidized bed, J. Eng. Thermophys. 35 (03) (2014)512-516.(in Chinese). [11] E. Abbaszadeh Molaei, A.B. Yu, Z.Y. Zhou, Particle scale modelling of solid flow characteristics in liquid fluidizations of ellipsoidal particles, Powder Technol. 338 (2018) 677-691. [12] P. Poullet, J.J. Munoz-Perez, G. Poortvliet, J. Mera, A. Contreras, P. Lopez, Influence of different sieving methods on estimation of sand size parameters, Water 11 (5) (2019) 879. [13] R.L. Xu, Light scattering: a review of particle characterization applications, Particuology 18 (2015) 11-21. [14] P.D. Thorne, I.D. Lichtman, D. Hurther, Acoustic scattering characteristics and inversions for suspended concentration and particle size above mixed sand and mud beds, Cont. Shelf Res. 214 (2021) 104320. [15] M. Naiim, A. Boualem, C. Ferre, M. Jabloun, A. Jalocha, P. Ravier, Multiangle dynamic light scattering for the improvement of multimodal particle size distribution measurements, Soft Matter 11 (1) (2015) 28-32. [16] S. Ramalingam, V. Chandra, Determination of suspended sediments particle size distribution using image capturing method, mar georesour geotechnol 36 (8) (2018) 867-874. [17] A.B. Oktay, A. Gurses, Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images, Micron 120 (2019) 113-119. [18] P. Rani, S. Kotwal, J. Manhas, V. Sharma, S. Sharma, Machine learning and deep learning based computational approaches in automatic microorganisms image recognition: methodologies, challenges, and developments, Arch. Comput. Methods Eng. 29 (3) (2022) 1801-1837. [19] M.H. Modarres, R. Aversa, S. Cozzini, R. Ciancio, A. Leto, G.P. Brandino, Neural network for nanoscience scanning electron microscope image recognition, Sci. Rep. 7 (1) (2017) 13282. [20] Y.N. Zhu, Q. Ouyang, Y.D. Mao, A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy, BMC Bioinformatics 18 (1) (2017) 348. [21] A. Colliard-Granero, M. Batool, J. Jankovic, J. Jitsev, M.H. Eikerling, K. Malek, M.J. Eslamibidgoli, Deep learning for the automation of particle analysis in catalyst layers for polymer electrolyte fuel cells, Nanoscale 14 (1) (2022) 10-18. [22] K.P. Treder, C. Huang, C.G. Bell, T.J.A. Slater, M.E. Schuster, D. Ozkaya, J.S. Kim, A.I. Kirkland, nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems, NPJ Comput. Mater. 9 (2023) 18. [23] R.F.L. Cerqueira, E.E. Paladino, Development of a deep learning-based image processing technique for bubble pattern recognition and shape reconstruction in dense bubbly flows, Chem. Eng. Sci. 230 (2021) 116163. [24] K.M. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, (2017) 2980-2988. [25] X. Yin, Y. Li, H. Fan, B. Jiang, Characterization of particle morphology of FCC catalyst, Acta Petrolei Sin. (Petrol. Process. Sect.) 39 (01) (2023)109-119.(in Chinese). [26] G.H. Bagheri, C. Bonadonna, I. Manzella, P. Vonlanthen, On the characterization of size and shape of irregular particles, Powder Technol. 270 (2015) 141-153. [27] A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31 (8) (2010) 651-666. [28] J.W. Zhong, J.F. Han, Y.X. Wei, P. Tian, X.W. Guo, C.S. Song, Z.M. Liu, Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications, Catal. Sci. Technol. 7 (21) (2017) 4905-4923. [29] Y. Lu, D. Liu, C. Li, J. Zhou, M. Ye, Experimental study on the morphology and coke amount of MTO catalyst using fiber-optic endoscope image method, CJChE.J. 73 (6) (2022)2662-2668.(in Chinese). [30] B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, LabelMe: a database and web-based tool for image annotation, Int. J. Comput. Vis. 77 (1) (2008) 157-173. |