[1] J.M. Thomas, The enduring relevance and academic fascination of catalysis, Nat. Catal. 1 (2018) 2-5. [2] P.J. Yuan, Y.Y. Sun, X.W. Xu, Y. Luo, M. Hong, Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones, Nat. Chem. 14 (3) (2022) 294-303. [3] B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources, Chem. Rev. 120 (17) (2020) 9304-9362. [4] A. Haque, R.A. Al-Balushi, I.J. Al-Busaidi, M.S. Khan, P.R. Raithby, Rise of conjugated poly-ynes and poly(metalla-ynes): from design through synthesis to structure-property relationships and applications, Chem. Rev. 118 (18) (2018) 8474-8597. [5] Q.J. Liang, X.P. Zhang, M.E. Rotella, Z.Y. Xu, M.C. Kozlowski, T.Z. Jia, Enantioselective Chan-lam S-arylation of sulfenamides, Nat. Catal. 7 (2024) 1010-1020. [6] K.B. Feng, R.E. Quevedo, J.T. Kohrt, M.S. Oderinde, U. Reilly, M. Christina White, Late-stage oxidative C(sp3)-H methylation, Nature 580 (7805) (2020) 621-627. [7] F. Chang, W.B. Gao, J.P. Guo, P. Chen, Emerging materials and methods toward ammonia-based energy storage and conversion, Adv. Mater. 33 (50) (2021) e2005721. [8] Z.S. Zhu, S. Zhong, C. Cheng, H.Y. Zhou, H.Q. Sun, X.G. Duan, S.B. Wang, Microenvironment engineering of heterogeneous catalysts for liquid-phase environmental catalysis, Chem. Rev. 124 (20) (2024) 11348-11434. [9] X.Y. Zou, X.D. Li, X.Y. Gao, Z.H. Gao, Z.J. Zuo, W. Huang, Density functional theory and kinetic Monte Carlo simulation study the strong metal-support interaction of dry reforming of methane reaction over Ni based catalysts, Chin. J. Chem. Eng. 29 (2021) 176-182. [10] J.T. Cai, Q.F. Huang, H. Chen, T. Zhang, B. Niu, Y.Y. Zhang, D.H. Long, Evaluating two stages of silicone-containing arylene resin oxidation via experiment and molecular simulation, Chin. J. Chem. Eng. 66 (2024) 189-202. [11] L. Wang, J.X. Guo, R.Y. Xiong, C.H. Gao, X.J. Zhang, D. Luo, In situ modification of heavy oil catalyzed by nanosized metal-organic framework at mild temperature and its mechanism, Chin. J. Chem. Eng. 67 (2024) 166-173. [12] B.W.J. Chen, L. Xu, M. Mavrikakis, Computational methods in heterogeneous catalysis, Chem. Rev. 121 (2) (2021) 1007-1048. [13] Y. Nian, X.Y. Huang, M.H. Liu, J.L. Zhang, Y. Han, Insight into the dynamic evolution of supported metal catalysts by In situ/operando techniques and theoretical simulations, ACS Catal. 13 (16) (2023) 11164-11171. [14] J. Kirkpatrick, B. McMorrow, D.H.P. Turban, A.L. Gaunt, J.S. Spencer, A.G.D.G. Matthews, A. Obika, L. Thiry, M. Fortunato, D. Pfau, L.R. Castellanos, S. Petersen, A.W.R. Nelson, P. Kohli, P. Mori-Sanchez, D. Hassabis, A.J. Cohen, Pushing the frontiers of density functionals by solving the fractional electron problem, Science 374 (6573) (2021) 1385-1389. [15] J. Meyers, B. Fabian, N. Brown, De novo molecular design and generative models, Drug Discov. Today 26 (11) (2021) 2707-2715. [16] J.L. Li, K. Lim, H.T. Yang, Z.K. Ren, S. Raghavan, P.Y. Chen, T. Buonassisi, X.N. Wang, AI applications through the whole life cycle of material discovery, Matter 3 (2) (2020) 393-432. [17] X.X. Zeng, F. Wang, Y. Luo, S.G. Kang, J. Tang, F.C. Lightstone, E.F. Fang, W. Cornell, R. Nussinov, F.X. Cheng, Deep generative molecular design reshapes drug discovery, Cell Rep. Med. 3 (12) (2022) 100794. [18] D.H. Lu, H. Wang, M.H. Chen, L. Lin, R. Car, E. Weinan, W.L. Jia, L.F. Zhang, 86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy, Comput. Phys. Commun. 259 (2021) 107624. [19] A. Bandi, P.V.S.R. Adapa, Yudu Eswar Vinay Pratap Kumar Kuchi, The power of generative AI: a review of requirements, models, input-output formats, evaluation metrics, and challenges, Future Internet 15 (8) (2023) 260. [20] A. Ishikawa, Heterogeneous catalyst design by generative adversarial network and first-principles based microkinetics, Sci. Rep. 12 (1) (2022) 11657. [21] K. Hisama, A. Ishikawa, S.M. Aspera, M. Koyama, Theoretical catalyst screening of multielement alloy catalysts for ammonia synthesis using machine learning potential and generative artificial intelligence, J. Phys. Chem. C 128 (44) (2024) 18750-18758. [22] F. Cornet, B. Benediktsson, B. Hastrup, M.N. Schmidt, A. Bhowmik, OM-Diff: inverse-design of organometallic catalysts with guided equivariant denoising diffusion, Digit. Discov. 3 (9) (2024) 1793-1811. [23] Z.Q. Niu, W.H. Zhao, H. Deng, L. Tian, V.J. Pinfield, P.W. Ming, Y. Wang, Generative artificial intelligence for designing multi-scale hydrogen fuel cell catalyst layer nanostructures, ACS Nano 18 (31) (2024) 20504-20517. [24] M.Z. Makos, N. Verma, E.C. Larson, M. Freindorf, E. Kraka, Generative adversarial networks for transition state geometry prediction, J. Chem. Phys. 155 (2) (2021) 024116. [25] A. Hoque, M. Surve, S. Kalyanakrishnan, R.B. Sunoj, Reinforcement learning for improving chemical reaction performance, J. Am. Chem. Soc. (2024). [26] R.C. Forsythe, C.P. Cox, M.K. Wilsey, A.M. Muller, Pulsed laser in liquids made nanomaterials for catalysis, Chem. Rev. 121 (13) (2021) 7568-7637. [27] H. Lv, P. Wang, Y. Lv, L.H. Dong, L.L. Li, M. Xu, L.H. Fu, B. Yue, D.G. Yu, Piezo-photocatalytic degradation of ciprofloxacin based on flexible BiVO4 PVDF nanofibers membrane, Catalysts 15 (2) (2025) 163. [28] W.B. Deng, Y. Liu, C. He, X.Z. Xiong, R. Zhang, T.F. Yan, S.C. Shi, D.G. Yu, H.S. Yang, Synergistic improvements of properties of cellulose acetate based curcumin@TiO2 nanofibers via triaxial electrospinning, Chem. Eng. J. 506 (2025) 160117. [29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, Commun. ACM 63 (11) (2020) 139-144. [30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, In: Proceedings of the 31st International Conference on Neural Information Processing Systems, California, USA, 2017. [31] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, In: Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20), New York, USA, 2020. [32] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, (2013): 1312.6114. [33] OpenAI, GPT-4 Technical report, arXiv (2023) arXiv:2303.08774. [34] Z.L. Song, L.F. Fan, S.H. Lu, C.Y. Ling, Q.H. Zhou, J.L. Wang, Inverse design of promising electrocatalysts for CO2 reduction via generative models and bird swarm algorithm, Nat. Commun. 16 (1) (2025) 1053. [35] O. Schilter, A. Vaucher, P. Schwaller, T. Laino, Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions, Digit. Discov. 2 (3) (2023) 728-735. [36] X.C. Liu, K. Park, M. So, S. Ishikawa, T. Terao, K. Shinohara, C. Komori, N. Kimura, G. Inoue, Y. Tsuge, 3D generation and reconstruction of the fuel cell catalyst layer using 2D images based on deep learning, J. Power Sources Adv. 14 (2022) 100084. [37] J. Marqueses-Rodriguez, R. Manzorro, J. Grzonka, A.J. Jimenez-Benitez, L.C. Gontard, A.B. Hungria, J.J. Calvino, M. Lopez-Haro, Quantitative 3D characterization of functionally relevant parameters in heavy-oxide-supported 4d metal nanocatalysts, Chem. Mater. 35 (18) (2023) 7564-7576. [38] H. Eliasson, A. Lothian, I. Surin, S. Mitchell, J. Perez-Ramirez, R. Erni, Precise size determination of supported catalyst nanoparticles via generative AI and scanning transmission electron microscopy, Small Methods 9 (3) (2025) e2401108. [39] Y.X. He, Y. Tan, M.S. Yang, Y.B. Wang, Y.G. Xu, J.H. Yuan, X.Y. Li, W.Q. Chen, G.Z. Kang, Accurate prediction of discontinuous crack paths in random porous media via a generative deep learning model, Proc. Natl. Acad. Sci. USA 121 (40) (2024) e2413462121. [40] T.T. Yang, D.L. Zhou, S. Ye, X.Y. Li, H.R. Li, Y. Feng, Z.F. Jiang, L. Yang, K. Ye, Y.X. Shen, S. Jiang, S. Feng, G.Z. Zhang, Y. Huang, S. Wang, J. Jiang, Catalytic structure design by AI generating with spectroscopic descriptors, J. Am. Chem. Soc. 145 (49) (2023) 26817-26823. [41] J. Ock, C. Guntuboina, A. Barati Farimani, Catalyst energy prediction with CatBERTa: unveiling feature exploration strategies through large language models, ACS Catal. 13 (24) (2023) 16032-16044. [42] D.H. Mok, S. Back, Generative pretrained transformer for heterogeneous catalysts, J. Am. Chem. Soc. 146 (49) (2024) 33712-33722. [43] J. Ock, S. Badrinarayanan, R. Magar, A. Antony, A. Barati Farimani, Multimodal language and graph learning of adsorption configuration in catalysis, Nat. Mach. Intell. 6 (2024) 1501-1511. [44] N.H. Park, M. Manica, J. Born, J.L. Hedrick, T. Erdmann, D.Y. Zubarev, N. Adell-Mill, P.L. Arrechea, Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language, Nat. Commun. 14 (2023) 3686. [45] X.Q. Chen, Y. Gao, L.D. Wang, W.J. Cui, J.M. Huang, Y. Du, B. Wang, Large language model enhanced corpus of CO2 reduction electrocatalysts and synthesis procedures, Sci. Data 11 (1) (2024) 347. [46] D.A. Boiko, R. MacKnight, B. Kline, G. Gomes, Autonomous chemical research with large language models, Nature 624 (7992) (2023) 570-578. [47] Y.Y. Pan, X.Y. Shan, F.R. Cai, H. Gao, J.N. Xu, M. Zhou, Accelerating the discovery of oxygen reduction electrocatalysts: high-throughput screening of element combinations in Pt-based high-entropy alloys, Angew. Chem. Int. Ed 63 (37) (2024) e202407116. [48] M. Suvarna, A.C. Vaucher, S. Mitchell, T. Laino, J. Perez-Ramirez, Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis, Nat. Commun. 14 (1) (2023) 7964. [49] N. Ansari, V. Babaei, M.M. Najafpour, Enhancing catalysis studies with chat generative pre-trained transformer (ChatGPT): Conversation with ChatGPT, Dalton Trans. 53 (8) (2024) 3534-3547. [50] N.S. Lai, Y.S. Tew, X.L. Zhong, J. Yin, J.L. Li, B.H. Yan, X.N. Wang, Artificial intelligence (AI) workflow for catalyst design and optimization, Ind. Eng. Chem. Res. 62 (43) (2023) 17835-17848. [51] https://dicp.cas.cn/xwdt/mtcf/202412/t20241205_7451404.html. [52] J.T. Margraf, H. Jung, C. Scheurer, K. Reuter, Exploring catalytic reaction networks with machine learning, Nat. Catal. 6 (2023) 112-121. |