[1] J.Y. Ye, N. Dimitratos, L.M. Rossi, N. Thonemann, A.M. Beale, R. Wojcieszak, Hydrogenation of CO2 for sustainable fuel and chemical production, Science 387 (6737) (2025) eadn9388. [2] E. Harkou, H. Wang, G. Manos, A. Constantinou, J.W. Tang, Advances in catalyst and reactor design for methanol steam reforming and PEMFC applications, Chem. Sci. 16 (9) (2025) 3810-3831. [3] J.W. Zhong, X.F. Yang, Z.L. Wu, B.L. Liang, Y.Q. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chem. Soc. Rev. 49 (5) (2020) 1385-1413. [4] S.N. Zhang, Z.X. Wu, X.F. Liu, K.M. Hua, Z.L. Shao, B.Y. Wei, C.J. Huang, H. Wang, Y.H. Sun, A short review of recent advances in direct CO2 hydrogenation to alcohols, Top. Catal. 64 (5) (2021) 371-394. [5] J. Wang, K.H. Sun, X.Y. Jia, C.J. Liu, CO2 hydrogenation to methanol over Rh/In2O3 catalyst, Catal. Today 365 (2021) 341-347. [6] T.F. Fang, B. Liu, Y. Lian, Z.H. Zhang, Selective methanol synthesis from CO2 hydrogenation over an In2O3/co/C-N catalyst, Ind. Eng. Chem. Res. 59 (43) (2020) 19162-19167. [7] Z. Han, C.Z. Tang, J.J. Wang, L.D. Li, C. Li, Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation, J. Catal. 394 (2021) 236-244. [8] J.Y. Ye, C.J. Liu, D.H. Mei, Q.F. Ge, Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study, ACS Catal. 3 (6) (2013) 1296-1306. [9] K.H. Sun, Z.G. Fan, J.Y. Ye, J.M. Yan, Q.F. Ge, Y.N. Li, W.J. He, W.M. Yang, C.J. Liu, Hydrogenation of CO2 to methanol over In2O3 catalyst, J. CO2 Util. 12 (2015) 1-6. [10] N. Rui, Z.Y. Wang, K.H. Sun, J.Y. Ye, Q.F. Ge, C.J. Liu, CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy, Appl. Catal. B Environ. 218 (2017) 488-497. [11] X.Y. Jia, K.H. Sun, J. Wang, C.Y. Shen, C.J. Liu, Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst, J. Energy Chem. 50 (2020) 409-415. [12] C.Y. Shen, K.H. Sun, Z.T. Zhang, N. Rui, X.Y. Jia, D.H. Mei, C.J. Liu, Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: experimental and theoretical studies, ACS Catal. 11 (7) (2021) 4036-4046. [13] Z.S. Shi, M. Pan, X.L. Wei, D.F. Wu, Cu-In intermetallic compounds as highly active catalysts for CH3OH formation from CO2 hydrogenation, Int. J. Energy Res. 46 (2) (2022) 1285-1298. [14] Q.L. Wu, C.Y. Shen, N. Rui, K.H. Sun, C.J. Liu, Experimental and theoretical studies of CO2 hydrogenation to methanol on Ru/In2O3, J. CO2 Util. 53 (2021) 101720. [15] C.Y. Shen, K.H. Sun, R. Zou, Q.L. Wu, D.H. Mei, C.J. Liu, CO2 hydrogenation to methanol on indium oxide-supported rhenium catalysts: the effects of size, ACS Catal. 12 (20) (2022) 12658-12669. [16] N. Rui, X.L. Wang, K.X. Deng, J. Moncada, R. Rosales, F. Zhang, W.Q. Xu, I. Waluyo, A. Hunt, E. Stavitski, S.D. Senanayake, P. Liu, J.A. Rodriguez, Atomic structural origin of the high methanol selectivity over In2O3-metal interfaces: metal-support interactions and the formation of a InOx overlayer in Ru/In2O3 catalysts during CO2 hydrogenation, ACS Catal. 13 (5) (2023) 3187-3200. [17] S. Tang, Z.D. Feng, Z. Han, F. Sha, C.Z. Tang, Y. Zhang, J.J. Wang, C. Li, Mononuclear Re sites on In2O3 catalyst for highly efficient CO2 hydrogenation to methanol, J. Catal. 417 (2023) 462-472. [18] H. Zhang, D.L. Mao, J.X. Zhang, D.F. Wu, Regulating the crystal structure of layered double hydroxide-derived Co-In catalysts for highly selective CO2 hydrogenation to methanol, Chem. Eng. J. 452 (2023) 139144. [19] Z.S. Shi, Q.Q. Tan, C. Tian, Y. Pan, X.W. Sun, J.X. Zhang, D.F. Wu, CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature, J. Catal. 379 (2019) 78-89. [20] Q.Q. Tan, Z.S. Shi, D.F. Wu, CO2 hydrogenation to methanol over a highly active Cu-Ni/CeO2-nanotube catalyst, Ind. Eng. Chem. Res. 57 (31) (2018) 10148-10158. [21] L.T. Li, B. Yang, B. Gao, Y.F. Wang, L.X. Zhang, T. Ishihara, W. Qi, L.M. Guo, CO2 hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship, Chin. J. Catal. 43 (3) (2022) 862-876. [22] A. Bavykina, I. Yarulina, A.J. Al Abdulghani, L. Gevers, M.N. Hedhili, X.H. Miao, A.R. Galilea, A. Pustovarenko, A. Dikhtiarenko, A. Cadiau, A. Aguilar-Tapia, J.L. Hazemann, S.M. Kozlov, S. Oud-Chikh, L. Cavallo, J. Gascon, Turning a methanation co catalyst into an In-co methanol producer, ACS Catal. 9 (8) (2019) 6910-6918. [23] K. Sun, M.H. Tan, Y.X. Bai, X.F. Gao, P. Wang, N.N. Gong, T. Zhang, G.H. Yang, Y.S. Tan, Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols, J. Catal. 378 (2019) 1-16. [24] A. Tsoukalou, P.M. Abdala, D. Stoian, X. Huang, M.G. Willinger, A. Fedorov, C.R. Muller, Structural evolution and dynamics of an In(2)O(3) catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study, J. Am. Chem. Soc. 141 (34) (2019) 13497-13505. [25] D.F. Lin, Z. Zhang, Y.Y. Chen, L.X. Zeng, X.C. Chen, X.H. Yang, B.Q. Huang, Y.J. Luo, Q.R. Qian, Q.H. Chen, The Co-In2O3 interaction concerning the effect of amorphous Co metal on CO2 hydrogenation to methanol, J. CO2 Util. 65 (2022) 102209. [26] O. Martin, A.J. Martin, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferre, J. Perez-Ramirez, Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation, Angew. Chem. Int. Ed. 55 (21) (2016) 6261-6265. [27] X. Jiang, N. Koizumi, X.W. Guo, C.S. Song, Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol, Appl. Catal. B Environ. 170-171 (2015) 173-185. [28] Z.J. Zhong, J.X. Li, M.Y. Jian, R.Y. Shu, Z.P. Tian, C. Wang, Y. Chen, N. Shi, Y.X. Wu, Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2 catalyst: Effect of TiO2 morphology, Fuel 333 (2023) 126241. [29] C.S. Yang, C.L. Pei, R. Luo, S.H. Liu, Y.N. Wang, Z.Y. Wang, Z.J. Zhao, J.L. Gong, Strong electronic oxide-support interaction over In(2)O(3)/ZrO(2) for highly selective CO2 hydrogenation to methanol, J. Am. Chem. Soc. 142 (46) (2020) 19523-19531. [30] J.A. Rodriguez, J. Evans, L. Feria, A.B. Vidal, P. Liu, K. Nakamura, F. Illas, CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane, J. Catal. 307 (2013) 162-169. [31] S.X. Guo, Z.S. Li, R. Yin, J.B. Li, Z. Zeng, Z.W. Hu, G.Y. Luo, J. Lv, S.Y. Huang, Y. Wang, X.B. Ma, Oxygen vacancy over CoMnOx catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas, ACS Catal. 13 (21) (2023) 14404-14414. [32] Q.P. Cheng, Y. Tian, S.S. Lyu, N. Zhao, K. Ma, T. Ding, Z. Jiang, L.H. Wang, J. Zhang, L.R. Zheng, F. Gao, L. Dong, N. Tsubaki, X.G. Li, Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis, Nat. Commun. 9 (1) (2018) 3250. [33] N.H.M. Dostagir, R. Rattanawan, M. Gao, J. Ota, J.Y. Hasegawa, K. Asakura, A. Fukouka, A. Shrotri, Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO, ACS Catal. 11 (15) (2021) 9450-9461. [34] S. Kattel, B.H. Yan, Y.X. Yang, J.G. Chen, P. Liu, Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper, J. Am. Chem. Soc. 138 (38) (2016) 12440-12450. [35] B. Liu, T.F. Fang, Y.M. He, In-Co-Zn/C-N catalysts derived from ZIFs for selective hydrogenation of CO2 into methanol, Catal. Sci. Technol. 12 (1) (2022) 300-309. [36] S.N. Zhang, X.F. Liu, H. Luo, Z.X. Wu, B.Y. Wei, Z.L. Shao, C.J. Huang, K.M. Hua, L. Xia, J. Li, L. Liu, W.T. Ding, H. Wang, Y.H. Sun, Morphological modulation of Co2C by surface-adsorbed species for highly effective low-temperature CO2 reduction, ACS Catal. 12 (14) (2022) 8544-8557. |