中国化学工程学报 ›› 2025, Vol. 86 ›› Issue (10): 45-63.DOI: 10.1016/j.cjche.2025.07.006
• Special Issue on Celebrating the 100th Anniversary of the School of Chemical Engineering and Technology of Tianjin University • 上一篇 下一篇
Guangzhong Cao, Kaichen Zhang, Xiao Liu, Shiyi Zhang, Chenxiao Jiang, Tongwen Xu
收稿日期:2025-03-30
修回日期:2025-07-25
接受日期:2025-07-27
出版日期:2025-10-28
发布日期:2025-08-12
通讯作者:
Chenxiao Jiang,E-mail:jcx11@ustc.edu.cn;Tongwen Xu,E-mail:twxu@ustc.edu.cn
基金资助:Guangzhong Cao, Kaichen Zhang, Xiao Liu, Shiyi Zhang, Chenxiao Jiang, Tongwen Xu
Received:2025-03-30
Revised:2025-07-25
Accepted:2025-07-27
Online:2025-10-28
Published:2025-08-12
Contact:
Chenxiao Jiang,E-mail:jcx11@ustc.edu.cn;Tongwen Xu,E-mail:twxu@ustc.edu.cn
Supported by:摘要: The recycling and resource utilization of high-value metals from spent lithium-ion batteries (LIBs) is a critical challenge for achieving sustainable development. While conventional hydrometallurgical and pyrometallurgical recycling methods dominate the industry, they suffer from significant drawbacks, including high pollution, excessive energy consumption, and suboptimal metal purity. In contrast, electrochemical recycling technology, leveraging electro-driven chemical reactions and selective ion migration, offers a promising alternative by minimizing acid/alkali usage and simplifying recovery processes, thereby enabling greener, more efficient, and energy-saving metal extraction. Based on the structural integrity of cathode materials during recycling, this review categorizes electrochemical approaches into indirect and direct recycling methods. Key aspects such as production purity, ion separation efficiency, and energy consumption in spent LIB recycling are critically examined. Furthermore, this review systematically evaluates electrodialysis and electrolysis techniques, highlighting their respective advantages and limitations. Finally, from a green production perspective, we discuss prospects for cost-effective and environmentally benign LIB recycling strategies, providing insights to guide the advancement of sustainable battery recycling technologies.
Guangzhong Cao, Kaichen Zhang, Xiao Liu, Shiyi Zhang, Chenxiao Jiang, Tongwen Xu. Electrodialysis and electrolysis for efficient and sustainable recycling of spent lithium-ion batteries[J]. 中国化学工程学报, 2025, 86(10): 45-63.
Guangzhong Cao, Kaichen Zhang, Xiao Liu, Shiyi Zhang, Chenxiao Jiang, Tongwen Xu. Electrodialysis and electrolysis for efficient and sustainable recycling of spent lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 45-63.
| [1] W.D. Li, B.H. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chem. Soc. Rev. 46 (10) (2017) 3006-3059. [2] H.C. Jin, S. Xin, C.H. Chuang, W.D. Li, H.Y. Wang, J. Zhu, H.Y. Xie, T.M. Zhang, Y.Y. Wan, Z.K. Qi, W.S. Yan, Y.R. Lu, T.S. Chan, X.J. Wu, J.B. Goodenough, H.X. Ji, X.F. Duan, Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage, Science 370 (6513) (2020) 192-197. [3] M. Li, J. Lu, Z.W. Chen, K. Amine, 30 years of lithium-ion batteries, Adv. Mater. 30 (33) (2018) 1800561. [4] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Recycling lithium-ion batteries from electric vehicles, Nature 575 (7781) (2019) 75-86. [5] N. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: Present and future, Mater. Today 18 (5) (2015) 252-264. [6] K.D. Du, E.H. Ang, X.L. Wu, Y.C. Liu, Progresses in sustainable recycling technology of spent lithium-ion batteries, Energy Environ. Mater. 5 (4) (2022) 1012-1036. [7] Q.D. Wang, Z.P. Yao, J.L. Wang, H. Guo, C. Li, D. Zhou, X.D. Bai, H. Li, B.H. Li, M. Wagemaker, C.L. Zhao, Chemical short-range disorder in lithium oxide cathodes, Nature 629 (8011) (2024) 341-347. [8] M.Y. Chen, X.T. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, Y. Wang, Recycling end-of-life electric vehicle lithium-ion batteries, Joule 3 (11) (2019) 2622-2646. [9] K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Ten years left to redesign lithium-ion batteries, Nature 559 (7715) (2018) 467-470. [10] T.Z. Yang, D. Luo, A.P. Yu, Z.W. Chen, Enabling future closed-loop recycling of spent lithium-ion batteries: Direct cathode regeneration, Adv. Mater. 35 (36) (2023) e2203218. [11] J. Neumann, M. Petranikova, M. Meeus, J.D. Gamarra, R. Younesi, M. Winter, S. Nowak, Recycling of lithium-ion batteries: current state of the art, circular economy, and next generation recycling, Adv. Energy Mater. 12 (17) (2022) 2102917. [12] S.Q. Sun, C.X. Jin, W.Z. He, G.M. Li, H.C. Zhu, J.W. Huang, Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process, Sci. Total Environ. 776 (2021) 145913. [13] W.B. Li, M.Y. Yang, R.Y. Long, K. Mamaril, Y.Y. Chi, Treatment of electric vehicle battery waste in China: a review of existing policies, J. Environ. Eng. Landsc. Manag. 29 (2) (2021) 111-122. [14] W.G. Lv, Z.H. Wang, H.B. Cao, Y. Sun, Y. Zhang, Z. Sun, A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustainable Chem. Eng. 6 (2) (2018) 1504-1521. [15] W. Chu, Y.L. Zhang, L.L. Chen, K.P. Wu, Y.G. Huang, Y. Jia, Comprehensive recycling of Al foil and active materials from the spent lithium-ion battery, Sep. Purif. Technol. 269 (2021) 118704. [16] F. Arshad, L. Li, K. Amin, E.S. Fan, N. Manurkar, A. Ahmad, J.B. Yang, F. Wu, R.J. Chen, A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries, ACS Sustainable Chem. Eng. 8 (36) (2020) 13527-13554. [17] J. Baars, T. Domenech, R. Bleischwitz, H.E. Melin, O. Heidrich, Circular economy strategies for electric vehicle batteries reduce reliance on raw materials, Nat. Sustain. 4 (1) (2021) 71-79. [18] J. Ordonez, E.J. Gago, A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renew. Sustain. Energy Rev. 60 (2016) 195-205. [19] Z. Li, I.C. Chen, L. Cao, X.W. Liu, K.W. Huang, Z.P. Lai, Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design, Science 385 (6716) (2024) 1438-1444. [20] E.S. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, F. Wu, Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects, Chem. Rev. 120 (14) (2020) 7020-7063. [21] R.E. Ciez, J.F. Whitacre, Examining different recycling processes for lithium-ion batteries, Nat. Sustain. 2 (2) (2019) 148-156. [22] J.F. Xiao, J. Li, Z.M. Xu, Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, J. Hazard. Mater. 338 (2017) 124-131. [23] J.W. Wang, H.F. Wang, G.W. Zhang, X.X. Ma, Y.Q. Liu, J. Hao, W.N. Xie, Y.Q. He, A review of research progress on combined pyro-hydrometallurgical technology for spent lithium-ion batteries, Chem. Eng. J. 505 (2025) 159403. [24] X.W. Lv, J. Lin, Q.R. Huang, X. Sun, E.S. Fan, R.J. Chen, F. Wu, L. Li, An emerging and consummate photocatalysis-assisted strategy for efficient recycling of spent lithium-ion batteries, ACS Energy Lett. 8 (10) (2023) 4287-4295. [25] W.G. Lv, J. Zhang, Y.P. Liu, J. Lin, X.H. Zheng, W.Y. Yan, H.B. Cao, Y. Zhang, Z. Sun, Selective recovery of lithium from spent lithium-ion batteries via mild hydrothermal driven Lewis acid-base reaction in aqua solution, Resour. Conserv. Recycl. 199 (2023) 107258. [26] B.W. Hou, R. Fu, H.Y. Wang, J.Y. Yan, R.R. Li, B.Y. Wang, C.X. Jiang, Y.M. Wang, T.W. Xu, One-step conversion of sulfate lithium into high-purity lithium hydroxide crystals via bipolar membrane crystallization, AIChE J. 69 (11) (2023) e18208. [27] C.X. Yi, L.J. Zhou, X.Q. Wu, W. Sun, L.S. Yi, Y. Yang, Technology for recycling and regenerating graphite from spent lithium-ion batteries, Chin. J. Chem. Eng. 39 (2021) 37-50. [28] D.N. Afifah, T. Ariyanto, S. Supranto, I. Prasetyo, Separation of lithium ion from lithium-cobalt mixture using electrodialysis monovalent membrane, Eng. J. 22 (3) (2018) 165-179. [29] Q. Meng, Y.J. Zhang, P. Dong, Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries, J. Clean. Prod. 180 (2018) 64-70. [30] J. Yan, J. Qian, Y. Li, L. Li, F. Wu, R.J. Chen, Toward sustainable lithium iron phosphate in lithium-ion batteries: regeneration strategies and their challenges, Adv. Funct. Mater. 34 (44) (2024) 2405055. [31] X.Y. Li, F.Y. Zhou, S.B. Gao, J.J. Zhao, D.H. Wang, H.Y. Yin, NaOH-assisted low-temperature roasting to recover spent LiFePO4 batteries, Waste Manag. 153 (2022) 347-354. [32] A. Battistel, M.S. Palagonia, D. Brogioli, F. La Mantia, R. Trocoli, Electrochemical methods for lithium recovery: A comprehensive and critical review, Adv. Mater. 32 (23) (2020) e1905440. [33] Z.F. Meng, X.T. Ma, J.H. Hou, Y.D. Zheng, Y. Wang, Impurity impacts of recycling NMC cathodes, Adv. Energy Mater. (2025) 2405383. [34] A. Iizuka, Y. Yamashita, H. Nagasawa, A. Yamasaki, Y. Yanagisawa, Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation, Sep. Purif. Technol. 113 (2013) 33-41. [35] X. Chen, X.Y. Ruan, S.E. Kentish, G. Li, T.W. Xu, G.Q. Chen, Production of lithium hydroxide by electrodialysis with bipolar membranes, Sep. Purif. Technol. 274 (2021) 119026. [36] Z.H. Foo, T.R. Lee, J.M. Wegmueller, S.M. Heath, J.H. Lienhard, Toward a circular lithium economy with electrodialysis: upcycling spent battery leachates with selective and bipolar ion-exchange membranes, Environ. Sci. Technol. 58 (43) (2024) 19486-19500. [37] Z. Li, L.H. He, Z.W. Zhao, D.Z. Wang, W.H. Xu, Recovery of lithium and manganese from scrap LiMn2O4 by slurry electrolysis, ACS Sustainable Chem. Eng. 7 (19) (2019) 16738-16746. [38] J.Z. Yu, X. Wang, M.Y. Zhou, Q. Wang, A redox targeting-based material recycling strategy for spent lithium ion batteries, Energy Environ. Sci. 12 (9) (2019) 2672-2677. [39] W. Shan, Y. Zi, H.D. Chen, M.Z. Li, M. Luo, T.Z. Oo, N.W. Lwin, S.H. Aung, D.L. Tang, G.G. Ying, F.M. Chen, Y. Chen, Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries, Water Res. 252 (2024) 121205. [40] G.Z. Cao, M.M. Alam, A.Z. Juthi, Z.R. Zhang, Y.M. Wang, C.X. Jiang, T.W. Xu, Electro-desalination: State-of-the-art and prospective, Adv. Membr. 3 (2023) 100058. [41] Y. Xu, Q.B. Chen, Y. Gao, J.Y. Wang, H.Q. Fan, F. Zhao, Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis, Chin. J. Chem. Eng. 59 (2023) 42-50. [42] T.S. Zhang, Y.J. Qian, C.Y. Zhang, T. Qian, C.L. Yan, Critical metal recovery from spent lithium-ion batteries’ leaching solution using electrodialysis technologies: strategies and challenges, Inorg. Chem. Front. 11 (22) (2024) 7775-7792. [43] L. Ge, B. Wu, D.B. Yu, A.N. Mondal, L.X. Hou, N.U. Afsar, Q.H. Li, T.T. Xu, J.B. Miao, T.W. Xu, Monovalent cation perm-selective membranes (MCPMs): New developments and perspectives, Chin. J. Chem. Eng. 25 (11) (2017) 1606-1615. [44] Y.R. Zhu, Y. Zhou, Q. Chen, R.Q. Fu, Z.M. Liu, L. Ge, T.W. Xu, Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis, Chin. J. Chem. Eng. 71 (2024) 45-57. [45] D.Y. Zhang, C.X. Jiang, Y.Y. Li, M.A. Shehzad, X. Wang, Y.M. Wang, T.W. Xu, Electro-driven in situ construction of functional layer using amphoteric molecule: the role of tryptophan in ion sieving, ACS Appl. Mater. Interfaces 11 (40) (2019) 36626-36637. [46] J.R. Rumble, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2024. [47] E.R. Nightingale Jr, Phenomenological theory of ion solvation. effective radii of hydrated ions, J. Phys. Chem. 63 (9) (1959) 1381-1387. [48] F. Yang, P.B. Armentrout, Periodic trends in the hydration energies and critical sizes of alkaline earth and transition metal dication water complexes, Mass Spectrom. Rev. 44 (2) (2025) 135-153. [49] S. Gmar, A. Chagnes, F. Lutin, L. Muhr, Application of electrodialysis for the selective lithium extraction towards cobalt, nickel and manganese from leach solutions containing high divalent cations/Li ratio, Recycling 7 (2) (2022) 14. [50] C.X. Jiang, B.L. Chen, Z.A. Xu, X.Y. Li, Y.M. Wang, L. Ge, T.W. Xu, Ion-“distillation” for isolating lithium from lake brine, AIChE J. 68 (6) (2022) e17710. [51] Q. Chen, Y.R. Zhu, C.X. Jiang, W.J. Song, Q.Y. Ye, H.Y. He, Z.Y. Ding, R.Q. Fu, Z.M. Liu, L. Ge, T.W. Xu, Pilot-scale poly(alkyl-biphenyl pyridine)-based monovalent anion perm-selective membranes with exceptional Cl-/SO42- selectivity in ion-distillation, J. Membr. Sci. 702 (2024) 122787. [52] S.H. Wang, T.L. Gu, G.Z. Cao, X. Liu, W.X. Shan, Z.M. Liu, R.Q. Fu, C.X. Jiang, T.W. Xu, Innovative packed-bed ion-distillation for direct lithium extraction, AIChE J. (2025) e18905. [53] G.Q. Ma, X.Y. Zhang, A.J. Cai, F. Liu, L. Wang, H.J. Zhou, Lithium extraction from salt lake brine by four-stage ion-distillation of flow electrode capacitive deionization, Chem. Eng. J. 493 (2024) 152519. [54] H. Naito, M. Shimizu, M. Higashi, Relative performance test of hollow fiber dialyzers, J. Dial. 3 (2-3) (1979) 173-190. [55] O. Tekinalp, P. Zimmermann, S. Holdcroft, O.S. Burheim, L.Y. Deng, Cation exchange membranes and process optimizations in electrodialysis for selective metal separation: A review, Membranes 13 (6) (2023) 566. [56] L. Wu, S. Garg, J.Z. Xie, C.Y. Zhang, Y. Wang, T. David Waite, Electrochemical removal of metal-organic complexes in metal plating wastewater: A comparative study of Cu-EDTA and Ni-EDTA removal mechanisms, Environ. Sci. Technol. 57 (33) (2023) 12476-12488. [57] Z.H. Li, P.H. Chang, W.T. Jiang, Mechanisms of Cu2+, triethylenetetramine (TETA), and Cu-TETA sorption on rectorite and its use for metal removal via metal-TETA complexation, J. Hazard. Mater. 373 (2019) 187-196. [58] C.X. Jiang, H.L. Chen, Y.L. Zhang, H.Y. Feng, M.A. Shehzad, Y.M. Wang, T.W. Xu, Complexation Electrodialysis as a general method to simultaneously treat wastewaters with metal and organic matter, Chem. Eng. J. 348 (2018) 952-959. [59] Z. Xing, M. Srinivasan, Lithium recovery from spent lithium-ion batteries leachate by chelating agents facilitated electrodialysis, Chem. Eng. J. 474 (2023) 145306. [60] G.W. Shan, X. Xiao, H. Gao, Q. Zhang, H.Y. Peng, W.X. Li, Diethylenetriaminepentaacetic acid (DTPA) grafted UiO-66-NH2/PES composite membrane for efficient removal of heavy metal ions, Sep. Purif. Technol. 362 (2025) 131650. [61] J.T. O’Brien, J.S. Prell, J.D. Steill, J. Oomens, E.R. Williams, Interactions of mono- and divalent metal ions with aspartic and glutamic acid investigated with IR photodissociation spectroscopy and theory, J. Phys. Chem. A 112 (43) (2008) 10823-10830. [62] K.H. Chan, M. Malik, G. Azimi, Separation of lithium, nickel, manganese, and cobalt from waste lithium-ion batteries using electrodialysis, Resour. Conserv. Recycl. 178 (2022) 106076. [63] L.J. Chen, W.Y. Liang, Y.J. Zhang, B.Y. Wang, X.J. Song, H.M. Abdel-Ghafar, L.X. Zhang, H.Q. Jiang, Metal coordination combining with electrodialysis for one-step separation of valuable metals from spent lithium-ion batteries, Chem. Eng. J. 488 (2024) 150882. [64] B.Y. Wang, F. Liu, F. Zhang, M. Tan, H.Q. Jiang, Y. Liu, Y. Zhang, Efficient separation and recovery of cobalt(II) and lithium(I) from spent lithium ion batteries (LIBs) by polymer inclusion membrane electrodialysis (PIMED), Chem. Eng. J. 430 (2022) 132924. [65] E.N. Hong, Z.C. Yang, H.Y. Zeng, L. Gao, C.Z. Yang, Recent development and challenges of bipolar membranes for high performance water electrolysis, ACS Mater. Lett. 6 (5) (2024) 1623-1648. [66] P.K. Giesbrecht, M.S. Freund, Recent advances in bipolar membrane design and applications, Chem. Mater. 32 (19) (2020) 8060-8090. [67] T.W. Xu, R.Q. Fu, A simple model to determine the trends of electric-field-enhanced water dissociation in a bipolar membrane. II. Consideration of water electrotransport and monolayer asymmetry, Desalination 190 (1-3) (2006) 125-136. [68] T.W. Xu, W.H. Yang, B.L. He, A simple model to determine the trends of electric field enhanced water dissociation in a bipolar membrane, Chin. J. Chem. Eng. 9 (2) (2001) 179-185. [69] M.A. Blommaert, D.A. Vermaas, B. Izelaar, B. Veen, W.A. Smith, Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes, J. Mater. Chem. A 7 (32) (2019) 19060-19069. [70] Z.A. Xu, L. Wan, Y.W. Liao, M.B. Pang, Q. Xu, P.C. Wang, B.G. Wang, Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm-2, Nat. Commun. 14 (1) (2023) 1619. [71] G.Z. Cao, Z.R. Zhang, X.Q. Yang, L. Wu, Z.M. Liu, C.X. Jiang, T.W. Xu, Polydopamine modified bipolar membrane for water electrolysis under fluctuating current, Sep. Purif. Technol. 363 (2025) 132028. [72] B.L. Chen, Z.R. Zhang, C.X. Jiang, R. Fu, J.Y. Yan, H.Y. Wang, R.R. Li, G.Z. Cao, Y.M. Wang, T.W. Xu, Electro-membrane reactor: A powerful tool for green chemical engineering, AIChE J. 69 (9) (2023) e18140. [73] A. Asadi, D.X. Kang, H. Bazargan Harandi, J.C. Jung, P.C. Sui, Utilization of lithium sulphate electrodialysis for closed-loop LIB recycling: Experimental study and process simulation, Sep. Purif. Technol. 343 (2024) 126989. [74] J.Y. Zhu, A. Asadi, D.X. Kang, J.C. Jung, P.Y. Abel Chuang, P.C. Sui, Bipolar membranes electrodialysis of lithium sulfate solutions from hydrometallurgical recycling of spent lithium-ion batteries, Sep. Purif. Technol. 354 (2025) 128715. [75] T.W. Xu, W.H. Yang, Citric acid production by electrodialysis with bipolar membranes, Chem. Eng. Process. Process. Intensif. 41 (6) (2002) 519-524. [76] X.L. Wei, W.J. Gao, Y.M. Wang, K. Wu, T.W. Xu, A green and economical method for preparing lithium hydroxide from lithium phosphate, Sep. Purif. Technol. 280 (2022) 119909. [77] D.Y. He, W.C. Fu, Z.H. Wang, J.Y. Yan, H.Y. Wang, R.R. Li, B.Y. Wang, X.C. Chen, Y.M. Wang, T.W. Xu, Bipolar membrane electrodialysis with isolation chamber enables high-purity LiOH production with ordinary membranes, AIChE J. 71 (4) (2025) e18674. [78] B.W. Hou, H.Y. Wang, J.Y. Yan, R.R. Li, S. Wu, B.Y. Wang, Y.M. Wang, T.W. Xu, Bipolar membrane crystallization enables near zero-waste production of high-purity oxalic acid crystals, Chem. Eng. Sci. 293 (2024) 120032. [79] H.Y. Yan, Y.M. Wang, L. Wu, M.A. Shehzad, C.X. Jiang, R.Q. Fu, Z.M. Liu, T.W. Xu, Multistage-batch electrodialysis to concentrate high-salinity solutions: Process optimisation, water transport, and energy consumption, J. Membr. Sci. 570 (2019) 245-257. [80] Z.H. Foo, D. Rehman, A.T. Bouma, S. Monsalvo, J.H. Lienhard, Lithium concentration from salt-lake brine by donnan-enhanced nanofiltration, Environ. Sci. Technol. 57 (15) (2023) 6320-6330. [81] J.D. Ying, M.J. Luo, Y. Jin, J.G. Yu, Selective separation of lithium from high Mg/Li ratio brine using single-stage and multi-stage selective electrodialysis processes, Desalination 492 (2020) 114621. [82] R.A. Tufa, S. Santoro, C. Flores-Fernandez, R.B. Zegeye, D. Fuentealba, M. Aquino, B. Barraza, B.M. Inzillo, S. Nasirov, G. D’Andrea, E. Troncoso, S. Straface, H. Estay, E. Curcio, Advances in integrated membrane processes for sustainable lithium extraction, Desalination 610 (2025) 118899. [83] A.H.M.G. Hyder, B. Nuraeni, S.M. Gallagher, M. Wasilk, J.D. Macholz, A.L. Lipson, J. Spangenberger, Lithium recovery and conversion from wastewater produced by recycling of Li-ion batteries via two-stage electrodialysis, ACS Sustainable Chem. Eng. 13 (12) (2025) 4651-4660. [84] Z.J. Peng, Q.C. Lu, Z.H. Zhu, Y.J. Zhao, M. Wang, Efficient and green recovery of lithium from spent lithium-ion batteries based on a multipotential field membrane process intensification, ACS Sustainable Chem. Eng. 12 (47) (2024) 17249-17262. [85] B. Adigun, B.P. Thapaliya, H.M. Luo, S. Dai, Complexation-driven ion-exchange polymer inclusion membranes for separation of cobalt and nickel ions from lithium-ion via proton pumping, RSC Sustain. 2 (6) (2024) 1859-1867. [86] G.D. Wen, S. Yuan, Z.Z. Dong, H.Y. Ding, P. Gao, Recycling of spent lithium iron phosphate battery cathode materials: A review, J. Clean. Prod. 474 (2024) 143625. [87] B.L. Zhang, X. Qu, J.K. Qu, X. Chen, H.W. Xie, P.F. Xing, D.H. Wang, H.Y. Yin, A paired electrolysis approach for recycling spent lithium iron phosphate batteries in an undivided molten salt cell, Green Chem. 22 (24) (2020) 8633-8641. [88] X. Zhang, M.Y. Zhu, Recycling spent lithium-ion battery cathode: an overview, Green Chem. 26 (13) (2024) 7656-7717. [89] Z.X. Wang, Y. Huang, X. Wang, D.D. Wu, X. Wu, Advanced solid-state electrolysis for green and efficient spent LiFePO4 cathode material recycling: Prototype reactor tests, Ind. Eng. Chem. Res. 61 (34) (2022) 12318-12328. [90] L.X. Wu, F.S. Zhang, X.H. Yue, Z.Y. Zhang, In-situ inducing hydroxyl radicals for the stripping of cathode materials from spent lithium iron phosphate battery, J. Clean. Prod. 372 (2022) 133749. [91] L. Yu, Y.C. Bai, I. Belharouak, Recycling of lithium-ion batteries via electrochemical recovery: A mini-review, Batteries 10 (10) (2024) 337. [92] Y. Jang, C.H. Hou, S. Park, K. Kwon, E. Chung, Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes, Resour. Conserv. Recycl. 175 (2021) 105837. [93] W. Liu, M.C. Liu, F.F. Ma, M.S. Qin, W. Zhong, X. Chen, Z.Q. Zeng, S.J. Cheng, J. Xie, Direct lithium extraction from spent batteries for efficient lithium recycling, Sci. Bull. 69 (11) (2024) 1697-1705. [94] A.L. Lipson, J.D. Macholz, Q. Dai, P. Melin, S.M. Gallagher, M. LeResche, B.J. Polzin, J.S. Spangenberger, Cost-effective and scalable approach for the separation and direct cathode recovery from end-of-life Li-ion batteries, Adv. Energy Mater. (2025) 2405430. [95] K. Liu, S.L. Yang, F.Y. Lai, H.Q. Wang, Y.G. Huang, F.H. Zheng, S.B. Wang, X.H. Zhang, Q.Y. Li, Innovative electrochemical strategy to recovery of cathode and efficient lithium leaching from spent lithium-ion batteries, ACS Appl. Energy Mater. 3 (5) (2020) 4767-4776. [96] F.Z. Yang, X.L. Chen, G. Qu, Q. Nie, G.X. Liu, W. Wan, T.Y. Wang, S. Li, Y.H. Huang, J. Li, C. Wang, Electrode separation via water electrolysis for sustainable battery recycling, Nat. Sustain. 8 (2025) 520-529. [97] J.J. Zhao, F.Y. Zhou, H.Y. Wang, X. Qu, D.F. Wang, Z.Y. Zheng, Y.Q. Cai, S.B. Gao, D.H. Wang, H.Y. Yin, Co-recovery of spent LiCoO2 and LiFePO4 by paired electrolysis, Green Chem. 26 (1) (2024) 456-465. [98] N. Wei, Y.Q. He, G.W. Zhang, Y. Feng, J.L. Li, Z.M. Liu, L.X. Ding, W.N. Xie, Green recycling of valuable metals from spent cathode materials by water electrolysis, J. Environ. Chem. Eng. 11 (6) (2023) 111150. [99] W.G. Lv, D.S. Ruan, X.H. Zheng, L. Li, H.B. Cao, Z.H. Wang, Y. Zhang, Z. Sun, One-step recovery of valuable metals from spent Lithium-ion batteries and synthesis of persulfate through paired electrolysis, Chem. Eng. J. 421 (2021) 129908. [100] J.L. Wang, H. Liang, X.B. Tang, Z.D. Gan, G.B. Li, Chemicals-free approach control interface characteristics of nanofiltration membrane: Feasibility and mechanism insight into CEM electrolysis, Water Res. 206 (2021) 117761. [101] J.L. Wang, J. Jiao, J.L. Duan, C.D. Wu, J.X. Yang, J. Zhao, H.S. Wang, Y. Tian, G.B. Li, H. Liang, Sustainable strategies of in-series AEM electrolysis and CEM electrolysis for the treatment of NF concentrates via ettringite-targeted mineral transition, Sep. Purif. Technol. 331 (2024) 125491. [102] Y.K. Li, W.G. Lv, H.L. Huang, W.Y. Yan, X.K. Li, P.G. Ning, H.B. Cao, Z. Sun, Recycling of spent lithium-ion batteries in view of green chemistry, Green Chem. 23 (17) (2021) 6139-6171. [103] J.F. Xiao, J. Li, Z.M. Xu, Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives, Environ. Sci. Technol. 54 (1) (2020) 9-25. [104] X.J. Pan, Z.H. Dou, T.A. Zhang, D.L. Meng, X.X. Han, Basic study on direct preparation of lithium carbonate powders by membrane electrolysis, Hydrometallurgy 191 (2020) 105193. [105] M.Q. Yu, E. Budiyanto, H. Tuysuz, Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction, Angew. Chem. Int. Ed. 61 (1) (2022) e202103824. [106] R.Q. Li, Y.J. Li, L.P. Dong, Q. Yang, S.C. Tian, Z.Q. Ren, Z.Y. Zhou, Study on selective recovery of lithium ions from lithium iron phosphate powder by electrochemical method, Sep. Purif. Technol. 310 (2023) 123133. [107] N. Yang, Z. Li, L.H. He, Recovery of battery-grade products from mixed spent LiFePO4/LiMn2O4 cathodes via slurry electrolysis, Sep. Purif. Technol. 317 (2023) 123859. [108] G.H. Zhu, D.W. Yu, E. Foka Meugang, H. Li, H.X. Huan, X.Y. Guo, Q.H. Tian, Powder electrolysis for direct selective lithium recovery from spent LiFePO4 materials, Resour. Conserv. Recycl. 199 (2023) 107282. [109] J. Xu, Y. Jin, K. Liu, N.W. Lyu, Z.L. Zhang, B. Sun, Q.Z. Jin, H.F. Lu, H.J. Tian, X. Guo, D. Shanmukaraj, H. Wu, M.C. Li, M. Armand, G.X. Wang, A green and sustainable strategy toward lithium resources recycling from spent batteries, Sci. Adv. 8 (40) (2022) eabq7948. [110] J.H. Ni, J.Y. Zhou, J.H. Bing, X.F. Guan, Recycling the cathode materials of spent Li-ion batteries in a H-Shaped neutral water electrolysis cell, Sep. Purif. Technol. 278 (2021) 119485. [111] J.J. Zhao, J.K. Qu, X. Qu, S.B. Gao, D.H. Wang, H.Y. Yin, Cathode electrolysis for the comprehensive recycling of spent lithium-ion batteries, Green Chem. 24 (16) (2022) 6179-6188. [112] X. Jia, H.J. Kang, G.Y. Hou, S.T. Lu, Y. Yao, Q. Wang, W. Qin, X.H. Wu, Coupling ferrocyanide-assisted PW/PB redox with efficient direct seawater electrolysis for hydrogen production, ACS Catal. 13 (6) (2023) 3692-3701. [113] F.L. Zhu, W. Guo, Y.Z. Fu, Functional materials for aqueous redox flow batteries: Merits and applications, Chem. Soc. Rev. 52 (23) (2023) 8410-8446. [114] X. Jia, H.J. Kang, G.Y. Hou, W.R. Wu, S.T. Lu, Y. Li, Q. Wang, W. Qin, X.H. Wu, Coupling ferricyanide/ferrocyanide redox mediated recycling spent LiFePO4 with hydrogen production, Angew. Chem. Int. Ed. 63 (10) (2024) e202318248. [115] P.F. Zhu, J.G. Hu, J. Hu, Y. Yang, W. Sun, Y. Yang, G.Q. Zou, H.S. Hou, X.B. Ji, Redox-mediated recycling of spent lithium-ion batteries coupled with low-energy consumption hydrogen production, ACS Energy Lett. 9 (2) (2024) 569-577. [116] Y.G. Zhu, Y. Du, C. Jia, M. Zhou, L. Fan, X. Wang, Q. Wang, Unleashing the power and energy of LiFePO4-based redox flow lithium battery with a bifunctional redox mediator, J. Am. Chem. Soc. 139 (18) (2017) 6286-6289. [117] H.S. Zheng, J.Q. Huang, T. Dong, Y.F. Sha, H.T. Zhang, J. Gao, S.J. Zhang, A novel strategy of lithium recycling from spent lithium-ion batteries using imidazolium ionic liquid, Chin. J. Chem. Eng. 41 (2022) 246-251. [118] M.L. Xu, C. Wu, F.X. Zhang, Y.H. Zhang, J.X. Ren, C.Y. Zhang, X.Z. Wang, L. Xiao, O. Fontaine, J.F. Qian, Potential regulation strategy enables ferrocene as p-type redox mediator for direct regeneration of spent LiFePO4 cathode, Energy Storage Mater. 71 (2024) 103611. [119] D. Lu, C.J. Xu, Y. Wang, W.F. Cai, Continuous desalination via redox flow desalination using sodium 4-sulfonatooxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (NaSO4-TEMPO), Chem. Eng. J. 431 (2022) 133917. [120] F.M. Chen, J. Wang, C.H. Feng, J.X. Ma, T. David Waite, Low energy consumption and mechanism study of redox flow desalination, Chem. Eng. J. 401 (2020) 126111. [121] G. Mohandass, S. Krishnan, T. Kim, Experimental analysis and modeling of closed-loop redox flow desalination, J. Electrochem. Soc. 169 (6) (2022) 063521. [122] Y.D. Xiao, H.D. Chen, M.Z. Li, Q.Y. He, T.Z. Oo, M. Zaw, N.W. Lwin, K.N. Hui, M. Luo, D.L. Tang, G.G. Ying, F.M. Chen, Ionic liquid redox flow desalination of seawater, Desalination 574 (2024) 117284. [123] J.Y. Yan, Y.X. Xia, J. Yang, L. Cheng, H.Q. Liu, B.Y. Wang, R.R. Li, Y.M. Wang, T.W. Xu, Selective electrodialysis with bipolar membranes for cobalt and lithium recovery from spent lithium-ion batteries, AIChE J. 71 (6) (2025) e18786. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001993号 
