[1] Y.C. Liu, Q.X. Cheng, B. Zhang, F. Tian, Three-phase hydrocyclone separator-A review, Chem. Eng. Res. Des. 100 (2015) 554-560. [2] H. Yoshida, K. Ono, K. Fukui, The effect of a new method of fluid flow control on submicron particle classification in gas-cyclones, Powder Technol. 149 (2-3) (2005) 139-147. [3] H. Chen, J. Zhang, S. Liu, J.Y. Xu, Liquid-solid two-phase flow and separation behavior in a novel cyclone separator, Phys. Fluids 36 (6) (2024) 063304. [4] J.X. Yang, G.G. Sun, C.Z. Gao, Effect of the inlet dimensions on the maximum-efficiency cyclone height, Sep. Purif. Technol. 105 (2013) 15-23. [5] K. Elsayed, C. Lacor, The effect of cyclone inlet dimensions on the flow pattern and performance, Appl. Math. Model. 35 (4) (2011) 1952-1968. [6] Z.W. Zhang, Q. Li, Y.H. Zhang, H.L. Wang, Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance, Sep. Purif. Technol. 286 (2022) 120394. [7] X.L. Yang, J.T. Yang, S.B. Wang, Y.M. Zhao, Effects of operational and geometrical parameters on velocity distribution and micron mineral powders classification in cyclone separators, Powder Technol. 407 (2022) 117609. [8] M.H. Jiang, W. Jiang, G.Y. Zhang, Y. Zhang, X.J. Wang, Structural design and testing of hydrocyclones for fine particle separation, J. Daqing Petro. Ins. 1 (2005) 58-60,123. in Chinese. [9] Y.W. Wang, S.M. Zhang, Y. Fang, Influence of hydrocyclone structural parameters on its performance, Guangdong Chem. Ind. 32 (10) (2005) 26-30, in Chinese. [10] K. Elsayed, C. Lacor, Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations, Chem. Eng. Sci. 65 (22) (2010) 6048-6058. [11] L.S. Brar, R.P. Sharma, K. Elsayed, The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone, Powder Technol. 286 (2015) 668-677. [12] R. Shastri, L.S. Brar, Numerical investigations of the flow-field inside cyclone separators with different cylinder-to-cone ratios using large-eddy simulation, Sep. Purif. Technol. 249 (2020) 117149. [13] R. Shastri, R.P. Sharma, L.S. Brar, Numerical investigations of cyclone separators with different cylinder-to-cone ratios, Part. Sci. Technol. 40 (3) (2022) 337-345. [14] R.B. Xiang, K.W. Lee, Numerical study of flow field in cyclones of different height, Chem. Eng. Process. Process. Intensif. 44 (8) (2005) 877-883. [15] J. Gimbun, T.G. Chuah, T.S.Y. Choong, A. Fakhru’l-Razi, Prediction of the effects of cone tip diameter on the cyclone performance, J. Aerosol Sci. 36 (8) (2005) 1056-1065. [16] O. Hamdy, M.A. Bassily, H.M. El-Batsh, T.A. Mekhail, Numerical study of the effect of changing the cyclone cone length on the gas flow field, Appl. Math. Model. 46 (2017) 81-97. [17] I.C. Bicalho, J.L. Mognon, J. Shimoyama, C.H. Ataide, C.R. Duarte, Effects of operating variables on the yeast separation process in a hydrocyclone, Sep. Sci. Technol. 48 (6) (2013) 915-922. [18] S.B. Kuang, K.W. Chu, A.B. Yu, A. Vince, Numerical study of liquid-gas-solid flow in classifying hydrocyclones: Effect of feed solids concentration, Miner. Eng. 31 (2012) 17-31. [19] L.M. Tavares, L.L.G. Souza, J.R.B. Lima, M.V. Possa, Modeling classification in small-diameter hydrocyclones under variable rheological conditions, Miner. Eng. 15 (8) (2002) 613-622. [20] T. Neesse, J. Dueck, H. Schwemmer, M. Farghaly, Using a high pressure hydrocyclone for solids classification in the submicron range, Miner. Eng. 71 (2015) 85-88. [21] H.X. Yuan, J.F. Yu, H.B. Liu, Effect of diverter ratio on the basic performance of oil-water separation cyclones, Petro. Machin. 9 (2000) 17-20, 2, in Chinese. [22] S. Chandrakant R., A. Kulkarni, R.V. Sawant, A.K. Pandey, H. Panchal, K.K. Sadasivuni, A. Kumar, Numerical simulation of cascaded cyclone separator for nanosize aerosol, Energy Sourc. Part A Recov. Utiliz. Environ. Eff. (2021) 1-21, https://doi.org/10.1080/15567036.2021.1974127. [23] J.C. Cullivan, R.A. Williams, R. Cross, Understanding the hydrocyclone separator through computational fluid dynamics, Chem. Eng. Res. Des. 81 (4) (2003) 455-466. [24] W.K. Evans, A. Suksangpanomrung, A.F. Nowakowski, The simulation of the flow within a hydrocyclone operating with an air core and with an inserted metal rod, Chem. Eng. J. 143 (1-3) (2008) 51-61. [25] M. Narasimha, M.S. Brennan, P.N. Holtham, T.J. Napier-Munn, A comprehensive CFD model of dense medium cyclone performance, Miner. Eng. 20 (4) (2007) 414-426. [26] Z. Zheng, L.X. Zhao, M. H. Jiang, M. Zhang, Simulation analysis and experimental study on hydrocyclone with new structure of overflow pipe, Petrochem. Equip. 40 (5) (2011) 5-8, in Chinese. [27] Z.C. Wang, W.Q. Chen, M.H. Jiang, X.M. Liu, L.X. Zhao, Optimal design of dynamic hydrocyclone structure parameters, J. Petro. 22 (4) (2001) 104-107, 1, in Chinese. [28] S.Y. Jiang, S.F. Yang, A cyclone with conveniently adjustable size of underflow port, Chinese pat., CN 201120021608.4, 2011-07-17. (in Chinese) [29] P. Zhang, X.F. Zhang, M. Q. Fan, Experimental study and numerical simulation of cyclone underflow orifice regulation method, Mining Machin. 42 (4) (2014) 78-82, in Chinese. [30] Y. Xue, F.S. Yan, X.Z. Hu, J.X. Shi, K. Zheng, Numerical study of three-dimensional gas-phase flow field of cyclone separator based on RSM model, Metall. Energ. 40 (01) (2021) 29-34, 38, in Chinese. [31] R.A. Johnson, W.E. Gibson, D.R. Libby, Performance of liquid-liquid cyclones, Ind. Eng. Chem. Fund. 15 (2) (1976) 110-115. [32] L.H. Wu, Performance study of folded angle inlet, round platform outlet and straight cylinder cyclone separator, Ph.D. Thesis, Zhejiang University, China, 2016, in Chinese. [33] S.Q. Tang, Research on the influence of performance parameters of cyclone separator based on CFD, Ph.D. Thesis, Shandong University of Technology, China, 2015, in Chinese. [34] M.H. Jiang, F. Tan, S.Q. Jin, G.L. Long, G.Q. Chen, B.R. Xu, Shape optimisation of cyclone based on Fluent mesh deformation, Adv. Chem. Eng. 35 (8) (2016) 2355-2361, in Chinese. [35] B. Tang. Research and structural design of cyclone separation process based on particle motion behavior regulation, Ph.D. Thesis, East China University of Science and Technology, China, 2016, in Chinese. |