[1] S.A. Belal, D.R. Kang, K.S. Shim, Effects of rumen-protected, long chain fatty acid, calcium salt supplementation on total lipid, fatty acids, and related gene expression in Korean cattle, SA J. An. Sci. 53 (5) (2024) 658-666. [2] H.P. Benecke, S.K. Allen, D.B. Garbark, Efficient fractionation and analysis of fatty acids and their salts in fat, oil and grease (FOG) deposits, J. Oleo Sci. 66 (2) (2017) 123-131. [3] A. Gupta, N.B. Bowden, Separation of cis-fatty acids from saturated and trans-fatty acids by nanoporous polydicyclopentadiene membranes, ACS Appl. Mater. Interfaces 5 (3) (2013) 924-933. [4] A. Hadzich, G.A. Gross, M. Leimbach, A. Ispas, A. Bund, S. Flores, Effect of polyalcohols on the anticorrosive behaviour of alkyd coatings prepared with drying oils, Prog. Org. Coat. 145 (2020) 105671. [5] A. Gomez-Siurana, F. Ruiz-Bevia, J. Fernandez-Sempere, E. Torregrosa-Fuerte, Purification of phosphoric acid by extraction with 2-ethyl-1-hexanol: equilibrium data and mass transfer coefficients, Ind. Eng. Chem. Res. 40 (3) (2001) 892-897. [6] F. Taddeo, R. Vitiello, R. Tesser, M. Melchiorre, K. Eranen, T. Salmi, V. Russo, M. Di Serio, Nonanoic acid esterification with 2-ethylhexanol: from batch to continuous operation, Chem. Eng. J. 444 (2022) 136572. [7] Y. Li, X.H. Liu, H.L. An, X.Q. Zhao, Y.J. Wang, One-pot sequential aldol condensation and hydrogenation of n-butyraldehyde to 2-ethylhexanol, Ind. Eng. Chem. Res. 55 (22) (2016) 6293-6299. [8] Y. Ichikawa, S.I. Hirano, B. Sato, H. Yamamoto, Y. Takefuji, F. Satoh, Guidelines for the selection of hydrogen gas inhalers based on hydrogen explosion accidents, Med. Gas Res. 13 (2) (2023) 43-48. [9] J. Kwak, H. Lee, S. Park, J. Park, S. Jung, Risk assessment of a hydrogen refueling station in an urban area, Energies 16 (9) (2023) 3963. [10] B. Park, Y. Kim, Reenacting the hydrogen tank explosion of a fuel-cell electric vehicle: an experimental study, Int. J. Hydrog. Energy 48 (89) (2023) 34987-35003. [11] X.Y. Wang, W. Gao, Hydrogen leakage risk assessment for hydrogen refueling stations, Int. J. Hydrog. Energy 48 (91) (2023) 35795-35808. [12] T.T. Ma, S.F. Zhao, W.W. Tang, W.W. Zhong, Y.H. Liu, Y.R. Feng, Z. Fang, H. Qin, H. Xu, Y.G. Li, Y. Zhao, F.R. Meng, L. Yi, W. He, K. Guo, Microreactors with multivariate external force field used for the chemical process intensification, Chem. Eng. J. 493 (2024) 152508. [13] Z.Z. Sun, X. Zhou, Z.N. Song, H. Yan, Y.X. Tuo, Y.B. Liu, H. Zhao, X.B. Chen, X. Feng, D. Chen, C.H. Yang, Numerical calculation of flow and reaction safety with different particle sizes in a fixed bed reactor for propene epoxidation with H2 and O2, Chem. Eng. Sci. 277 (2023) 118777. [14] X.H. Zhang, Z. Chen, J. Chen, J.H. Xu, Liquid-phase oxidation of cyclohexane with air in a microreactor: Kinetics and process intensification, Chem. Eng. Sci. 288 (2024) 119777. [15] A.A.H. Laporte, T.M. Masson, S.D.A. Zondag, T. Noel, Multiphasic continuous-flow reactors for handling gaseous reagents in organic synthesis: enhancing efficiency and safety in chemical processes, Angew. Chem. Int. Ed 63 (11) (2024) e202316108. [16] C.S. Li, H.C. Zhang, W.X. Liu, L. Sheng, M.J. Cheng, B.J. Xu, G.S. Luo, Q. Lu, Efficient conversion of propane in a microchannel reactor at ambient conditions, Nat. Commun. 15 (1) (2024) 884. [17] S.Y. Chen, J. Verding, X.J. Lang, Y. Ouyang, G.J. Heynderickx, K.M. Van Geem, Advances in design of internals: applications in conventional and process intensification units, Chem. Eng. Process. Process. Intensif. 201 (2024) 109806. [18] P. Du, J.A. Venkidasalapathy, S. Venkateswaran, B. Wilhite, C. Kravaris, Model-based fault diagnosis and fault tolerant control for safety-critical chemical reactors: a case study of an exothermic continuous stirred-tank reactor, Ind. Eng. Chem. Res. 62 (34) (2023) 13554-13571. [19] U. Gnadinger, D. Poier, C. Trombini, M. Dabros, R. Marti, Development of lab-scale continuous stirred-tank reactor as flow process tool for oxidation reactions using molecular oxygen, Org. Process Res. Dev. 28 (5) (2024) 1860-1868. [20] J.Y. Ni, J.Q. Si, T. Lan, W.D. Sun, G.F. Zhao, Y. Liu, Y. Lu, Mn2O3-Na3PO4/TiO2 catalyst with high anti-agglomeration and attrition resistance for fluidized-bed oxidative coupling of methane, Fuel 356 (2024) 129613. [21] S.D. Pollington, B.S. Kalirai, E.H. Stitt, Batch to continuous: from laboratory recycle trickle bed test reactor data to full-scale plant preliminary design: a case study based on the hydrogenation of resorcinol, Processes 12 (5) (2024) 859. [22] A. Milewska, E.J. Molga, CFD simulation of accidents in industrial batch stirred tank reactors, Chem. Eng. Sci. 62 (18-20) (2007) 4920-4925. [23] Z. Jaworski, A.W. Nienow, CFD modelling of continuous precipitation of barium sulphate in a stirred tank, Chem. Eng. J. 91 (2-3) (2003) 167-174. [24] Y.Y. Hui, X. Feng, X.X. Duan, Z.S. Mao, C. Yang, Experimental and numerical study on the residence time distribution in a stirred membrane reactor, Ind. Eng. Chem. Res. 62 (16) (2023) 6486-6499. [25] T. Meng, Y. Wang, S.S. Wang, S. Qin, Q. Zhang, Y.D. Wang, C.Y. Tao, Y.Q. Xu, Z.H. Liu, Exploration of multishafts stirred reactors: an investigation on experiments and large eddy simulations for turbulent chaos and mixing characteristics, Ind. Eng. Chem. Res. 63 (5) (2024) 2441-2456. [26] J. Kersebaum, S. Flaischlen, D. Julia Hofinger, P.D.I G.D. Wehinger, Simulating stirred tank reactor characteristics with a lattice Boltzmann CFD code, Chem. Eng. Technol. 47 (3) (2024) 586-595. [27] R. Kumari, B. Kasina, R. Gupta, H.J. Pant, R.K. Upadhyay, Effect of novel mixed impeller on local bubble size and flow regime transition in pilot scale gas-liquid stirred tank reactor, Chem. Prod. Process. Model. 19 (2) (2024) 229-249. [28] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, Z.H. Lin, When machine learning meets privacy: a survey and outlook, ACM Comput. Surv. 54 (2)20211-20236. [29] C.W. Coley, D.A. Thomas 3rd, J.A.M. Lummiss, J.N. Jaworski, C.P. Breen, V. Schultz, T. Hart, J.S. Fishman, L. Rogers, H.Y. Gao, R.W. Hicklin, P.P. Plehiers, J. Byington, J.S. Piotti, W.H. Green, A. John Hart, T.F. Jamison, K.F. Jensen, A robotic platform for flow synthesis of organic compounds informed by AI planning, Science 365 (6453) (2019) eaax1566. [30] M.H.S. Segler, M. Preuss, M.P. Waller, Planning chemical syntheses with deep neural networks and symbolic AI, Nature 555 (7698) (2018) 604-610. [31] B.S. Chew, N.N. Trinh, D.T. Koch, E. Borras, M.K. LeVasseur, L.A. Simms, M.M. McCartney, P. Gibson, N.J. Kenyon, C.E. Davis, Data-driven approach to modeling microfabricated chemical sensor manufacturing, Anal. Chem. 96 (1) (2024) 364-372. [32] J.M. Cole, How the shape of chemical data can enable data-driven materials discovery, Trends Chem. 3 (2) (2021) 111-119. [33] E.G. Nabati, S. Engell, Data-driven adaptive robust control of a CSTR, 2012 16th IEEE Mediterranean Electrotechnical Conference. March 25-28, 2012, Yasmine Hammamet, Tunisia. IEEE, (2012) 946-949. [34] B.W. Nyande, Z.K. Nagy, R. Lakerveld, Data-driven identification of crystallization kinetics, AIChE. J. 70 (5) (2024) e18333. [35] L.T. Zhu, X.Z. Chen, B. Ouyang, W.C. Yan, H. Lei, Z. Chen, Z.H. Luo, Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors, Ind. Eng. Chem. Res. 61 (28) (2022) 9901-9949. [36] B. Ouyang, L.T. Zhu, Z.H. Luo, Machine learning for full spatiotemporal acceleration of gas-particle flow simulations, Powder Technol. 408 (2022) 117701. [37] Y.J. Shi, J. Wang, Q. Wang, Q.Z. Jia, F.Y. Yan, Z.H. Luo, Y.N. Zhou, Supervised machine learning algorithms for predicting rate constants of ozone reaction with micropollutants, Ind. Eng. Chem. Res. 61 (24) (2022) 8359-8367. [38] L.T. Zhu, B. Ouyang, H. Lei, Z.H. Luo, Conventional and data-driven modeling of filtered drag, heat transfer, and reaction rate in gas-particle flows, AIChE. J. 67 (8) (2021) e17299. [39] L. Rajulapati, S. Chinta, B. Shyamala, R. Rengaswamy, Integration of machine learning and first principles models, AIChE. J. 68 (6) (2022) e17715. [40] N. Sharma, Y.A. Liu, A hybrid science-guided machine learning approach for modeling chemical processes: a review, AIChE. J. 68 (5) (2022) e17609. [41] I.B. Aka, M. Iscan, An AI-accelerated CFD application on a benchmark device: FDA nozzle, 2022 Medical Technologies Congress (TIPTEKNO)., Antalya, Turkey. IEEE, 2022. [42] J. Jeon, J. Lee, R. Vinuesa, S.J. Kim, Residual-based physics-informed transfer learning: a hybrid method for accelerating long-term CFD simulations via deep learning, Int. J. Heat Mass Transf. 220 (2024) 124900. [43] D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, S. Hoyer, Machine learning-accelerated computational fluid dynamics, Proc. Natl. Acad. Sci. USA 118 (21) (2021) e2101784118. [44] S. Sathyanarayanan, S. Suresh, M. Sridharan, Application of CFD and ANN in predicting the flow nature of flue gas in the catalytic converter, J. Sci. Ind. Res. 81 (1) (2022): 51-59. [45] X.Z. Zhao, H.A. Fan, G.B. Lin, Z.C. Fang, W.L. Yang, M. Li, J.H. Wang, X.Y. Lu, B.L. Li, K.J. Wu, J. Fu, Multi-objective optimization of radially stirred tank based on CFD and machine learning, AIChE. J. 70 (3) (2024) e18324. [46] C. Li, Oxidative dehydrogenation of 2-ethylhexanol to prepare 2-ethylhexanoic acid, J. Fuzhou Univ. (Nat. Sci. Ed.), 25 (3) (1997) 118-121. [47] S.H. Shabbeer Basha, S.R. Dubey, V. Pulabaigari, S. Mukherjee, Impact of fully connected layers on performance of convolutional neural networks for image classification, Neurocomputing 378 (2020) 112-119. [48] K.R. Ganju, Q. Wang, W. Yang, C.A. Gunter, N. Borisov, K.R. Ganju, Q. Wang, W. Yang, C.A. Gunter, N. Borisov, Property inference attacks on fully connected neural networks using permutation invariant representations, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. Toronto, Canada, 2018. [49] F.M. Huang, J. Zhang, C.B. Zhou, Y.H. Wang, J.S. Huang, L. Zhu, A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction, Landslides 17 (1) (2020) 217-229. [50] C.L. Zhu, J.T. Wang, Process structure-based fully connected neural network for the modelling of chemical processes: a comparison between global and modular configurations, J. Taiwan Inst. Chem. Eng. 157 (2024) 105430. [51] M. Soroush, E. Simsek, G. Moille, K. Srinivasan, C.R. Menyuk, Predicting broadband resonator-waveguide coupling for microresonator frequency combs through fully connected and recurrent neural networks and attention mechanism, ACS Photonics 10 (6) (2023) 1795-1805. [52] P.Y. Li, T.L. Zheng, L. Li, X.Y. Lv, W.J. Wu, Z.N. Shi, X.Q. Zhou, G.T. Zhang, Y.Q. Ma, J.X. Liu, Simulating and predicting the performance of a horizontal subsurface flow constructed wetland using a fully connected neural network, J. Clean. Prod. 380 (2022) 134959. [53] W.X. Hu, L.X. Guan, M.S. Li, Prediction of DNA Methylation based on Multi-dimensional feature encoding and double convolutional fully connected convolutional neural network, PLoS Comput. Biol. 19 (8) (2023) e1011370. [54] M. Asfand-E-Yar, Q. Hashir, A.A. Shah, H.A.M. Malik, A. Alourani, W. Khalil, Multimodal CNN-DDI: using multimodal CNN for drug to drug interaction associated events, Sci. Rep. 14 (1) (2024) 4076. [55] Y. Wang, Y.B. Sun, Z.W. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph CNN for learning on point clouds, ACM Trans. Graph. 38 (5) (2019) 1-12. [56] Z.M. Li, Y.Y. Xu, D.F. Ke, K.L. Su, PLDE: a lightweight pooling layer for spoken language recognition, Speech Commun. 158 (2024) 103055. [57] S.A. Khadem, A.D. Rey, Nucleation and growth of cholesteric collagen tactoids: a time-series statistical analysis based on integration of direct numerical simulation (DNS) and long short-term memory recurrent neural network (LSTM-RNN), J. Colloid Interface Sci. 582 (Pt B) (2021) 859-873. [58] C.H. Qi, S. Huang, X.F. Wang, Monitoring water quality parameters of Taihu Lake based on remote sensing images and LSTM-RNN, IEEE Access 8 (2020) 188068-188081. [59] S. Singh, S.S. Kasana, Quantitative estimation of soil properties using hybrid features and RNN variants, Chemosphere 287 (2022) 131889. [60] H. Kim, M. Park, C.W. Kim, D. Shin, Source localization for hazardous material release in an outdoor chemical plant via a combination of LSTM-RNN and CFD simulation, Comput. Chem. Eng. 125 (2019) 476-489. |