[1] K.G. Mann, R.J. Jenny, S. Krishnaswamy, Cofactor proteins in the assembly and expression of blood clotting enzyme complexes, Annu. Rev. Biochem. 57 (1988) 915-956. [2] R.J. Leadley Jr, Coagulation factor xa inhibition: Biological background and rationale, Curr. Top. Med. Chem. 1 (2) (2001) 151-159. [3] S. Roehrig, A. Straub, J. Pohlmann, T. Lampe, J. Pernerstorfer, K.H. Schlemmer, P. Reinemer, E. Perzborn, Discovery of the Novel Antithrombotic Agent 5-Chloro-N-({(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1, 3-oxazolidin-5-yl}methyl)thiophene- 2-carboxamide (BAY 59-7939): An Oral, Direct Factor Xa Inhibitor, J. Med. Chem. 48 (19) (2005) 5900-5908. [4] F. Cheng, H. Liang, A.J. Butte, C. Eng, R. Nussinov, Personal mutanomes meet modern oncology drug discovery and precision health, Pharmacol. Rev. 71 (1) (2019) 1-19. [5] B.J. Neves, R.C. Braga, C.C. Melo-Filho, J.T. Moreira-Filho, E.N. Muratov, C.H. Andrade, QSAR-based virtual screening: Advances and applications in drug discovery, Front. Pharmacol. 9 (2018) 1275. [6] W.P. Walters, Virtual chemical libraries, J. Med. Chem. 62 (3) (2019) 1116-1124. [7] A.N. Jain, Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities, J. Comput. Aided Mol. Des. 10 (5) (1996) 427-440. [8] G. Schneider, U. Fechner, Computer-based de novo design of drug-like molecules, Nat. Rev. Drug Discov. 4 (8) (2005) 649-663. [9] M.H.S. Segler, T. Kogej, C. Tyrchan, M.P. Waller, Generating focused molecule libraries for drug discovery with recurrent neural networks, ACS Cent. Sci. 4 (1) (2018) 120-131. [10] Q.L. Liu, L. Zhang, L.L. Liu, J. Du, A.K. Tula, M. Eden, R. Gani, OptCAMD: An optimization-based framework and tool for molecular and mixture product design, Comput. Chem. Eng. 124 (2019) 285-301. [11] H.Q. Wen, Y. Su, Z.H. Wang, S.M. Jin, J.Z. Ren, W.F. Shen, M. Eden, A systematic modeling methodology of deep neural network-based structure-property relationship for rapid and reliable prediction on flashpoints, AlChE. J. 68 (1) (2022) e17402. [12] Y. Su, Z.H. Wang, S.M. Jin, W.F. Shen, J.Z. Ren, M.R. Eden, An architecture of deep learning in QSPR modeling for the prediction of critical properties using molecular signatures, AlChE. J. 65 (9) (2019) e16678. [13] J. Zhang, Q. Wang, W.F. Shen, Message-passing neural network based multi-task deep-learning framework for COSMO-SAC based σ-profile and VCOSMO prediction, Chem. Eng. Sci. 254 (2022) 117624. [14] J. Zhang, Q. Wang, W.F. Shen, Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library, Chin. J. Chem. Eng. 52 (2022) 115-125. [15] Z.H. Wang, H.Q. Wen, Y. Su, W.F. Shen, J.Z. Ren, Y.J. Ma, J. Li, Insights into ensemble learning-based data-driven model for safety-related property of chemical substances, Chem. Eng. Sci. 248 (2022) 117219. [16] Y. Su, S.M. Jin, X.P. Zhang, W.F. Shen, M.R. Eden, J.Z. Ren, Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm, Comput. Chem. Eng. 132 (2020) 106618. [17] Z.H. Wang, Y. Su, W.F. Shen, S.M. Jin, J.H. Clark, J.Z. Ren, X.P. Zhang, Predictive deep learning models for environmental properties: The direct calculation of octanol-water partition coefficients from molecular graphs, Green Chem. 21 (16) (2019) 4555-4565. [18] Z.H. Wang, Y. Su, S.M. Jin, W.F. Shen, J.Z. Ren, X.P. Zhang, J.H. Clark, A novel unambiguous strategy of molecular feature extraction in machine learning assisted predictive models for environmental properties, Green Chem. 22 (12) (2020) 3867-3876. [19] Q.L. Liu, S. Xiang, J. Du, Q.W. Meng, J.B. Chen, M. Gao, B. Xing, L. Zhang, Improved prediction of reaction kinetics for amine absorbent-based carbon capture using reactive site-based transition state conformer search method, Fuel 361 (2024) 130730. [20] A.J. Clark, P. Tiwary, K. Borrelli, S.L. Feng, E.B. Miller, R. Abel, R.A. Friesner, B.J. Berne, Prediction of protein-ligand binding poses via a combination of induced fit docking and metadynamics simulations, J. Chem. Theory Comput. 12 (6) (2016) 2990-2998. [21] L. Fusani, D.S. Palmer, D.O. Somers, I.D. Wall, Exploring ligand stability in protein crystal structures using binding pose metadynamics, J. Chem. Inf. Model. 60 (3) (2020) 1528-1539. [22] M. Allegra, M. Tutone, L. Tesoriere, A. Attanzio, G. Culletta, A.M. Almerico, Evaluation of the IKKβ binding of indicaxanthin by induced-fit docking, binding pose metadynamics, and molecular dynamics, Front. Pharmacol. 12 (2021) 701568. [23] Y.J. Zhao, Q.L. Liu, X.Y. Wu, L. Zhang, J. Du, Q.W. Meng, De novo drug design framework based on mathematical programming method and deep learning model, AlChE. J. 68 (9) (2022): e17748. [24] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (1-3) (2001) 3-26. [25] D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45 (12) (2002) 2615-2623. [26] G. Landrum, RDKit: open-source cheminformatics, Software. http://www.rdkit.org (2016). [27] N. Churi, L.E.K. Achenie, Novel mathematical programming model for computer aided molecular design, Ind. Eng. Chem. Res. 35 (10) (1996) 3788-3794. [28] G.R. Bickerton, G.V. Paolini, J. Besnard, S. Muresan, A.L. Hopkins, Quantifying the chemical beauty of drugs, Nat. Chem. 4 (2) (2012) 90-98. [29] A.T. Karunanithi, L.E.K. Achenie, R. Gani, A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures, Ind. Eng. Chem. Res. 44 (13) (2005) 4785-4797. [30] M. Tawarmalani, Sahinidis N.V, A polyhedral branch-and-cut approach to global optimization, Math. Program. Ser. A B 103 (2) (2005) 225-249. [31] R.F. Boisvert, S.E. Howe, D.K. Kahaner, GAMS: A framework for the management of scientific software, ACM Trans. Math. Softw. 11 (4)313-355. [32] M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner, A hierarchical approach to all-atom protein loop prediction, Proteins 55 (2) (2004) 351-367. [33] G.M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (3) (2013) 221-234. [34] C. Lu, C.J. Wu, D. Ghoreishi, W. Chen, L.L. Wang, W. Damm, G.A. Ross, M.K. Dahlgren, E. Russell, C.D. Von Bargen, R. Abel, R.A. Friesner, E.D. Harder, OPLS4: Improving force field accuracy on challenging regimes of chemical space, J. Chem. Theory Comput. 17 (7) (2021) 4291-4300. [35] J.R. Greenwood, D. Calkins, A.P. Sullivan, J.C. Shelley, Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution, J. Comput. Aided Mol. Des. 24 (6-7) (2010) 591-604. [36] A. Gholami, D. Minai-Tehrani, S.J. Mahdizadeh, P. Saenz-Mendez, L.A. Eriksson, Structural insights into Pseudomonas aeruginosa exotoxin A-elongation factor 2 interactions: A molecular dynamics study, J. Chem. Inf. Model. 63 (5) (2023) 1578-1591. [37] M. Manish, S. Mishra, A. Anand, N. Subbarao, Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics, Comput. Biol. Med. 150 (2022) 106125. [38] Z. Yang, W. Wang, Y. Qi, Y. Yang, C.H. Chen, J.Z. Liu, G.X. Chu, G.H. Bao, Exploring new catechin derivatives as SARS-CoV-2 Mpro inhibitors from tea by molecular networking, surface plasma resonance, enzyme inhibition, induced fit docking, and metadynamics simulations, Comput. Biol. Med. 151 (Pt A) (2022) 106288. [39] Y. Weng, C.H. Pan, Z.Y. Shen, S.K. Chen, L. Xu, X.W. Dong, J. Chen, Identification of potential WSB1 inhibitors by AlphaFold modeling, virtual screening, and molecular dynamics simulation studies, Evid. Based Complement. Alternat. Med. 2022 (2022) 4629392. [40] V. Chahal, R. Kakkar, A combination strategy of structure-based virtual screening, MM-GBSA, cross docking, molecular dynamics and metadynamics simulations used to investigate natural compounds as potent and specific inhibitors of tumor linked human carbonic anhydrase IX, J. Biomol. Struct. Dyn. 41 (12) (2023) 5465-5480. [41] Z. Yin, Mechanism of small molecules inhibiting activator protein-1 DNA binding probed with induced fit docking and metadynamics simulations, J. Chem. Inf. Model. 59 (12) (2019) 5276-5280. [42] S.K. Burley, C. Bhikadiya, C.X. Bi, S. Bittrich, L. Chen, G.V. Crichlow, C.H. Christie, K. Dalenberg, L. Di Costanzo, J.M. Duarte, S. Dutta, Z.K. Feng, S. Ganesan, D.S. Goodsell, S. Ghosh, R.K. Green, V. Guranovic, D. Guzenko, B.P. Hudson, C.L. Lawson, Y.H. Liang, R. Lowe, H. Namkoong, E. Peisach, I. Persikova, C. Randle, A. Rose, Y. Rose, A. Sali, J. Segura, M. Sekharan, C.H. Shao, Y.P. Tao, M. Voigt, J.D. Westbrook, J.Y. Young, C. Zardecki, M. Zhuravleva, RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences, Nucleic Acids Res. 49 (D1) (2021) D437-D451. |