[1] H.J. Sena, F.V. da Silva, A.M.F. Fileti, ANN model adaptation algorithm based on extended Kalman filter applied to pH control using MPC, J. Process. Contr. 102 (2021) 15-23. [2] C.X. Fu, X. Ma, L.X. Zhang, Fuzzy-PID strategy based on PSO optimization for pH control in water and fertilizer integration, IEEE Access 10 (2022) 4471-4482. [3] D. Rathnayake, K.C. Bal Krishna, G. Kastl, A. Sathasivan, The role of pH on sewer corrosion processes and control methods: a review, Sci. Total Environ. 782 (2021) 146616. [4] X. Wang, Y.B. Li, Y. Zhang, Y.R. Pan, L. Li, J.X. Liu, D. Butler, Stepwise pH control to promote synergy of chemical and biological processes for augmenting short-chain fatty acid production from anaerobic sludge fermentation, Water Res. 155 (2019) 193-203. [5] I.H. Vural, A. Altinten, H. Hapoglu, S. Erdogan, M. Alpbaz, Application of pH control to a tubular flow reactor, Chin. J. Chem. Eng. 23 (1) (2015) 154-161. [6] A. Pawlowski, J.L. Guzman, M. Berenguel, F.G. Acien, Control system for pH in raceway photobioreactors based on wiener models, IFAC-PapersOnLine 52 (1) (2019) 928-933. [7] E.A. Herrera, T.A. Silva, Anticipative pH control of sugarcane juice, in: 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), IEEE, Ibague, Colombia, 2021. [8] S.K. Sunori, G.S. Jethi, A.S. Bhakuni, P.K. Juneja, Neuro-fuzzy modeling of PH neutralization process in sugar mill, in: 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), IEEE, Dehradun, India, 2020. [9] M.C. Heredia-Molinero, J. Sanchez-Prieto, J.V. Briongos, M.C. Palancar, Feedback PID-like fuzzy controller for pH regulatory control near the equivalence point, J. Process. Contr. 24 (7) (2014) 1023-1037. [10] Y.J. Zhang, Y. Jia, T.Y. Chai, D.H. Wang, W. Dai, J. Fu, Data-driven PID controller and its application to pulp neutralization process, IEEE Trans. Contr. Syst. Technol. 26 (3) (2018) 828-841. [11] Z.Y. Zou, D.D. Zhao, X.H. Liu, Y.Q. Guo, C. Guan, W.Q. Feng, N. Guo, Pole-placement self-tuning control of nonlinear Hammerstein system and its application to pH process control, Chin. J. Chem. Eng. 23 (8) (2015) 1364-1368. [12] D. Alves Goulart, R. Dutra Pereira, Autonomous pH control by reinforcement learning for electroplating industry wastewater, Comput. Chem. Eng. 140 (2020) 106909. [13] A.L. E, pH control using PI control algorithms with automatic tuning method, Chem. Eng. Res. Des. 79 (5) (2001) 611-620. [14] A. Nejati, M. Shahrokhi, A. Mehrabani, Comparison between backstepping and input-output linearization techniques for pH process control, J. Process. Contr. 22 (1) (2012) 263-271. [15] J. Chen, D.T. Chao, Q. Guo, Sliding Mode Control Based on LTR Observer for PH Neutralization Process, 2017 6th Data Driven Control and Learning Systems (DDCLS). May 26-27, 2017, Chongqing, China. IEEE, (2017) 721-726. [16] H. Wu, F. Yan, G.J. Wang, C. Lv, A predictive control based on decentralized fuzzy inference for a pH neutralization process, J. Process. Contr. 110 (2022) 76-83. [17] L. Estofanero, R. Edwin, G. Claudio, Predictive controller applied to a pH neutralization process, IFAC-PapersOnLine 52 (1) (2019) 202-206. [18] Z.Y. Zou, M. Yu, Z.Z. Wang, X.H. Liu, Y.Q. Guo, F.B. Zhang, N. Guo, Nonlinear model algorithmic control of a pH neutralization process, Chin. J. Chem. Eng. 21 (4) (2013) 395-400. [19] E.H.K. Alkamil, S. Al-Dabooni, A.K. Abbas, R. Flori, D.C. Wunsch, Learning from experience: an automatic pH neutralization system using hybrid fuzzy system and neural network, Procedia Comput. Sci. 140 (2018) 206-215. [20] P. Mehrpour, S. Ahmad Mirbagheri, M. Kavianimalayeri, A.H. Sayyahzadeh, M. Ehteshami, Experimental pH adjustment for different concentrations of industrial wastewater and modeling by Artificial Neural Network, Environ. Technol. Innov. 31 (2023) 103212. [21] Y. Yang, Q. Wu, A neural network PID control for PH neutralization process, in: 2016 35th Chinese Control Conference (CCC), IEEE, Chengdu, China, 2016. [22] J. Ren, Y.S. Ding, K.R. Hao, Model-free adaptive control based on particle swarm optimization algorithm for water bath drawing process of carbon fiber, Appl. Mech. Mater. 303-306 (2013) 1180-1184. [23] Y.M. Zhu, Z.S. Hou, F. Qian, W.L. Du, Dual RBFNNs-based model-free adaptive control with aspen HYSYS simulation, IEEE Trans. Neural Netw. Learn. Syst. 28 (3) (2017) 759-765. [24] P. Zhonghua, M. Biao, S. Wentai, L. Guoping, An improved tight-format model-free adaptive control method, Control Decis. 36 (2) (2021) 436-442. (in Chinese). [25] Z. Hou, S. Jin, Model Free Adaptive Control: Theory and Applications[M].CRC Press,Boca Raton, FL,USA, 2013. |