[1] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. technological use of CO2, Chem. Rev. 114 (3) (2014) 1709-1742. [2] A. Otto, T. Grube, S. Schiebahn, D. Stolten, Closing the loop: Captured CO2 as a feedstock in the chemical industry, Energy Environ. Sci. 8 (11) (2015) 3283-3297. [3] M. Cokoja, C. Bruckmeier, B. Rieger, W.A. Herrmann, F.E. Kuhn, Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge? Angew. Chem. Int. Ed 50 (37) (2011) 8510-8537. [4] R.R. Kuruppathparambil, R. Babu, H.M. Jeong, G.Y. Hwang, G.S. Jeong, M.I. Kim, D.W. Kim, D.W. Park, A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2, Green Chem. 18 (23) (2016) 6349-6356. [5] J.F. Luo, I. Larrosa, C-H carboxylation of aromatic compounds through CO2 fixation, ChemSusChem 10 (17) (2017) 3317-3332. [6] K. Sordakis, C.H. Tang, L.K. Vogt, H. Junge, P.J. Dyson, M. Beller, G. Laurenczy, Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols, Chem. Rev. 118 (2) (2018) 372-433. [7] M. Ulusoy, O. Sahin, A. Kilic, O. Buyukgungor, Multinuclear Cu(II) schiff base complex as efficient catalyst for the chemical coupling of CO2 and epoxides: Synthesis, X-ray structural characterization and catalytic activity, Catal. Lett. 141 (5) (2011) 717-725. [8] E. Aytar, E. Yasar, A. Kilic, The efficient and reusable imidazolium-organoboron catalysts for green CO2 insertion reactions in solvent-free under atmospheric and high-pressure conditions, Fuel 378 (2024) 132867. [9] A. Kilic, V. D’Elia, E. Aytar, C. Phungpanya, F. Aslanli, Synthesis of cyclic carbonates from CO2 and epoxides by novel metal and halide-free chiral boron compounds, Tetrahedron 174 (2025) 134485. [10] A. Alhafez, E. Aytar, A. Kilic, Enhancing catalytic strategy for cyclic carbonates synthesized from CO2 and epoxides by using cobaloxime-based double complex salts as catalysts, J. CO2 Util. 63 (2022) 102129. [11] A. Kilic, A. Alhafez, E. Aytar, R. Soylemez, The sustainable catalytic conversion of CO2 into value-added chemicals by using cobaloxime-based double complex salts as efficient and solvent-free catalysts, Inorg. Chim. Acta 554 (2023) 121547. [12] C.Y. Duan, M.L. Ding, Y. Feng, M.J. Cao, J.F. Yao, ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition, Sep. Purif. Technol. 285 (2022) 120359. [13] Z.C. Yang, Y. Feng, C.Y. Duan, Y.M. Xie, J.F. Yao, Enhancing the catalytic activity of zeolitic imidazolate frameworks (ZIFs) via an etching and regrowth method for CO2 cycloaddition reaction, ACS Appl. Mater. Interfaces (2023). [14] Y. An, X.L. Lv, W.Y. Jiang, L.L. Wang, Y.X. Shi, X.X. Hang, H. Pang, The stability of MOFs in aqueous solutions: Research progress and prospects, Green Chem. Eng. 5 (2) (2024) 187-204. [15] Y.H. Wen, Q. Liu, S.D. Su, Y.Y. Yang, X.F. Li, Q.L. Zhu, X.T. Wu, Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets, Nanoscale 12 (24) (2020) 12767-12772. [16] C.M. Miralda, E.E. Macias, M.Q. Zhu, P. Ratnasamy, M.A. Carreon, Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate, ACS Catal. 2 (1) (2012) 180-183. [17] M.H. Zhou, J.L. Chen, Z.Y. Qu, Y. Du, J.X. Zhang, H. Jiang, R.Z. Chen, Dimension and shape controllable ZIFs for highly-efficient chemical fixation of CO2 without solvent and co-catalyst, Sep. Purif. Technol. 320 (2023) 124120. [18] R.J. Zheng, W.Q. Yan, Y. Xia, Highly water-dispersible hydroxyl functionalized covalent organic frameworks as matrix for enhanced MALDI-TOF MS identification and quantification of quaternary ammonium salts in water and fruits, Anal. Chim. Acta 1227 (2022) 340269. [19] X. Zhu, S.H. An, Y. Liu, J. Hu, H.L. Liu, C.C. Tian, S. Dai, X.J. Yang, H.L. Wang, C.W. Abney, S. Dai, Efficient removal of organic dye pollutants using covalent organic frameworks, AlChE. J. 63 (8) (2017) 3470-3478. [20] I. Ahmed, G. Lee, H.J. Lee, S.H. Jhung, Adsorption of pharmaceuticals from water using metal-organic frameworks (MOFs), MOF-derived carbons, covalent-organic frameworks (COFs), COF-derived carbons: Comparison of the four adsorbents, Chem. Eng. J. 488 (2024) 151022. [21] S.M. Wu, Y.W. Li, T.H. Wang, H. Li, X.N. Wang, L.J. Ma, N.Z. Zhang, P.H. Yue, Y.H. Li, Design and synthesis of dual functional porphyrin-based COFs as highly selective adsorbent and photocatalyst, Chem. Eng. J. 470 (2023) 144135. [22] S. Ghosh, T.S. Khan, A. Ghosh, A.H. Chowdhury, M. Ali Haider, A. Khan, S.M. Islam, Utility of silver nanoparticles embedded covalent organic frameworks as recyclable catalysts for the sustainable synthesis of cyclic carbamates and 2-oxazolidinones via atmospheric cyclizative CO2 capture, ACS Sustainable Chem. Eng. 8 (14) (2020) 5495-5513. [23] M.L. Yin, L.P. Wang, S.K. Tang, Stable dicationic covalent organic frameworks manifesting notable structure-enhanced CO2 capture and conversion, ACS Catal. 13 (19) (2023) 13021-13033. [24] Y.R. Zhang, D.H. Yang, S.L. Qiao, B.H. Han, Synergistic catalysis of ionic liquid-decorated covalent organic frameworks with polyoxometalates for CO2 cycloaddition reaction under mild conditions, Langmuir 37 (34) (2021) 10330-10339. [25] W. Tariq, M. Pudukudy, Y. Liu, S.J. Li, C.R. Zhang, A. Ali Haider, L. Lin, G. Murtaza, M. Nauman Tahir, Y.F. Zhi, S.Y. Shan, Nitrogen-rich covalent-organic-framework as a recyclable heterogenous catalyst for the efficient cycloaddition of carbon dioxide with epoxides, Sep. Purif. Technol. 353 (2025) 128361. [26] Y.F. Zhi, P.P. Shao, X. Feng, H. Xia, Y.M. Zhang, Z. Shi, Y. Mu, X.M. Liu, Covalent organic frameworks: Efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions, J. Mater. Chem. A 6 (2) (2018) 374-382. [27] N. Haque, S. Biswas, S. Ghosh, A.H. Chowdhury, A. Khan, S.M. Islam, Zn(II)-embedded nanoporous covalent organic frameworks for catalytic conversion of CO2 under solvent-free conditions, ACS Appl. Nano Mater. 4 (8) (2021) 7663-7674. [28] M. Sengupta, A. Bag, S. Ghosh, P. Mondal, A. Bordoloi, S.M. Islam, CuxOy@COF: An efficient heterogeneous catalyst system for CO2 cycloadditions under ambient conditions, J. CO2 Util. 34 (2019) 533-542. [29] A. Rehman, F. Saleem, F. Javed, A. Ikhlaq, S.W. Ahmad, A. Harvey, Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides, J. Environ. Chem. Eng. 9 (2) (2021) 105113. [30] P. Puthiaraj, K. Pitchumani, Palladium nanoparticles supported on triazine functionalised mesoporous covalent organic polymers as efficient catalysts for Mizoroki-Heck cross coupling reaction, Green Chem. 16 (9) (2014) 4223-4233. [31] X.W. Hu, Y. Long, M.Y. Fan, M. Yuan, H. Zhao, J.T. Ma, Z.P. Dong, Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis, Appl. Catal. B Environ. 244 (2019) 25-35. [32] X.H. Shen, J.X. Zhang, H. Jiang, Y. Du, R.Z. Chen, Hierarchical Pd@PC-COFs as efficient catalysts for phenol hydrogenation, Ind. Eng. Chem. Res. 61 (13) (2022) 4534-4545. [33] H.Y. Zhao, Z. Jin, H.M. Su, X.F. Jing, F.X. Sun, G.S. Zhu, Targeted synthesis of a 2D ordered porous organic framework for drug release, Chem. Commun. 47 (22) (2011) 6389-6391. [34] F. Li, L.G. Ding, B.J. Yao, N. Huang, J.T. Li, Q.J. Fu, Y.B. Dong, Pd loaded and covalent-organic framework involved chitosan aerogels and their application forcontinuous flow-through aqueous CB decontamination, J. Mater. Chem. A 6 (24) (2018) 11140-11146. [35] N.S. Padalkar, S.V. Sadavar, R.B. Shinde, A.S. Patil, U.M. Patil, D.S. Dhawale, H.M. Pathan, S.D. Sartale, V.G. Parale, A. Vinu, C.D. Lokhande, J.L. Gunjakar, Mesoporous nanohybrids of 2D Ni-Cr-layered double hydroxide nanosheets pillared with polyoxovanadate anions for high-performance hybrid supercapacitor, Adv. Mater. Interfaces 9 (1) (2022) 2101216. [36] H. Zhao, G.Q. Yu, M. Yuan, J. Yang, D. Xu, Z.P. Dong, Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications, Nanoscale 10 (45) (2018) 21466-21474. [37] J. Tharun, G. Mathai, A.C. Kathalikkattil, R. Roshan, Y.S. Won, S.J. Cho, J.S. Chang, D.W. Park, Exploring the catalytic potential of ZIF-90: Solventless and co-catalyst-free synthesis of propylene carbonate from propylene oxide and CO2, Chempluschem 80 (4) (2015) 715-721. [38] I. Bhattacharya, P. Banerjee, J. Sadhukhan, T. Chakraborty, Modulations of νO-H and νC=O stretching frequencies of difluoroacetic acid with internal rotation of CHF2 rotor: A combined vapor phase and matrix isolation infrared spectroscopy study, J. Phys. Chem. A 123 (13) (2019) 2771-2779. [39] L. Ding, R.F. Mao, S.R. Ma, X.T. Guo, L.Y. Zhu, High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants, Water Res. 174 (2020) 115634. [40] M.K. Rabchinskii, S.D. Saveliev, D.Y. Stolyarova, M. Brzhezinskaya, D.A. Kirilenko, M.V. Baidakova, S.A. Ryzhkov, V.V. Shnitov, V.V. Sysoev, P.N. Brunkov, Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination, Carbon 182 (2021) 593-604. [41] H. Zhao, L.R. Wang, G.H. Liu, Y.T. Liu, S.Q. Zhang, L.H. Wang, X.B. Zheng, L.Y. Zhou, J. Gao, J.F. Shi, Y.J. Jiang, Hollow Rh-COF@COF S-scheme heterojunction for photocatalytic nicotinamide cofactor regeneration, ACS Catal. 13 (10) (2023) 6619-6629. [42] S. Verma, G. Kumar, A. Ansari, R.I. Kureshy, N.H. Khan, A nitrogen rich polymer as an organo-catalyst for cycloaddition of CO2 to epoxides and its application for the synthesis of polyurethane, Sustainable Energy Fuels 1 (7) (2017) 1620-1629. [43] Y.L. Lu, H.N. Wu, D.N. Li, Y. Huang, H.J. Guo, T.L. Wang, L.J. Shi, Q. Yi, De novo assembly of frustrated Lewis pair bearing metal-organic frameworks for atmospheric CO2 cycloaddition, AlChE. J. 70 (4) (2024) e18349. [44] M.K. Leu, I. Vicente, J.A. Fernandes, I. de Pedro, J. Dupont, V. Sans, P. Licence, A. Gual, I. Cano, On the real catalytically active species for CO2 fixation into cyclic carbonates under near ambient conditions: Dissociation equilibrium of [BMIm] [Fe(NO)2Cl2] dependant on reaction temperature, Appl. Catal. B Environ. 245 (2019) 240-250. [45] X.Y. Xie, H.Y. Li, W.W. Cao, D. Ke, Z. Dong, L. Tian, X.Y. Xiong, J.B. Zhang, A bifunctional catalyst derived from copper metal-organic framework for highly selective photocatalytic CO2 reduction and CO2 cycloaddition reaction, J. Mol. Struct. 1312 (2024) 138556. |