[1] H.W. Yan, B.S. Nie, C. Peng, P.J. Liu, X.T. Wang, F.F. Yin, J. Gong, Y.Y. Wei, S.S. Lin, Molecular model construction of low-quality coal and molecular simulation of chemical bond energy combined with materials studio, Energy Fuels 35 (21) (2021) 17602-17616. [2] L.J. Li, D.M. Liu, Y.D. Cai, Y.J. Wang, Q.F. Jia, Coal structure and its implications for coalbed methane exploitation: a review, Energy Fuels 35 (1) (2021) 86-110. [3] C.Y. Wang, Y.W. Xing, K.Y. Shi, S.W. Wang, Y.C. Xia, J.H. Li, X.H. Gui, Chemical structure characteristics and model construction of coal with three kinds of coalification degrees, ACS Omega 9 (1) (2023) 1881-1893. [4] T. Xu, D.K. Hong, C.B. Wang, Y. Zhang, Y.H. Li, Investigation of N migration during municipal sludge/coal co-pyrolysis via ReaxFF molecular dynamics, Energy Fuels 37 (17) (2023) 12776-12787. [5] X.F. Liu, D.Z. Song, X.Q. He, B.S. Nie, Q. Wang, R. Sun, D.L. Sun, Coal macromolecular structural characteristic and its influence on coalbed methane adsorption, Fuel 222 (2018) 687-694. [6] M. Zheng, Y. Pan, Z. Wang, X.X. Li, L. Guo, Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments, Fuel 268 (2020) 117290. [7] P. Zou, A.Y. Yuan, B. Zhang, H.Q. Liu, K. Jin, H. Zhong, Study on pore structure and adsorption properties of coal and microscopic action mechanism of outburst, Sci. Rep. 15 (1) (2025) 7374. [8] H.A.G. Chermin, D.W. van Krevelen, Chemical structure and properties of coal. XVII-A mathematical model of coal pyrolysis, Fuel 36(1) (1957) 85-104. [9] G.X. Li, F.J. Zheng, Q.F. Huang, J.J. Wang, B. Niu, Y.Y. Zhang, D.H. Long, Molecular insight into pyrolysis processes via reactive force field molecular dynamics: a state-of-the-art review, J. Anal. Appl. Pyrolysis 166 (2022) 105620. [10] M.D. Casal, M.F. Vega, E. Diaz-Faes, C. Barriocanal, The influence of chemical structure on the kinetics of coal pyrolysis, Int. J. Coal Geol. 195 (2018) 415-422. [11] M.J. Gao, X.X. Li, L. Guo, Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics, Fuel Process. Technol. 178 (2018) 197-205. [12] J. Wang, Q.L. Hou, F.G. Zeng, G.J. Guo, Gas generation mechanisms of bituminous coal under shear stress based on ReaxFF molecular dynamics simulation, Fuel 298 (2021) 120240. [13] M. Zheng, X.X. Li, F.G. Nie, L. Guo, Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics, Energy Fuels 31 (4) (2017) 3675-3683. [14] W. Feng, H.F. Gao, G. Wang, L.L. Wu, J.Q. Xu, Z.M. Li, P. Li, H.C. Bai, Q.J. Guo, Molecular model and pyrolysis simulation of Zaoquan coal, CIESC J. 70 (4) (2019) 1522-1531. [15] Z.B. Huang, W.J. Zhou, J.J. Wei, Study on the molecular structure model of tar-rich coal and its pyrolysis process, J. Mol. Struct. 1286 (2023) 135613. [16] R.T. Cui, W.L. Xu, Y.P. Zhang, J.X. Wang, Y.Y. Qiao, Y.Y. Tian, In-depth understanding of the rapid pyrolysis free radical reaction regulation mechanism of C-S bonds in coal at the molecular level, Fuel 389 (2025) 134630. [17] Q.F. Luo, Y.H. Bai, J.T. Wei, X.D. Song, P. Lv, J.F. Wang, W.G. Su, G.H. Lu, G.S. Yu, Insights into the oxygen-containing groups transformation during coal char gasification in H2O/CO2 atmosphere by using ReaxFF reactive force field, J. Energy Inst. 109 (2023) 101293. [18] J.J. Zhou, J. Wang, S.Z. Tang, Z.C. Li, Y.Y. Xu, X. Niu, Simulations on coal water slurry gasification by molecular dynamics method with ReaxFF, J. Mol. Model. 30 (7) (2024) 213. [19] J. Wang, Y.Q. He, H. Li,.D. Yu W.N. Xie, H. Wei, The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques, Fuel 203 (2017) 764-773. [20] B. Chen, Z.J. Diao, H.Y. Lu, Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the Hatcher lignite model, Fuel 116 (2014) 7-13. [21] S. Dwivedi, M. Kowalik, N. Rosenbach, D.S. Alqarni, Y.K. Shin, Y. Yang, J.C. Mauro, A. Tanksale, A.L. Chaffee, A.C.T. van Duin, Atomistic mechanisms of thermal transformation in a Zr-metal organic framework, MIL-140C, J Phys Chem Lett 12 (1) (2021) 177-184. [22] K.Y. Shi, J.Q. Chen, X.Q. Pang, F.J. Jiang, S.S. Hui, S.J. Zhang, H. Pang, Y.Y. Wang, D. Chen, X.B. Yang, B.Y. Li, T.Y. Pu, Average molecular structure model of shale kerogen: Experimental characterization, structural reconstruction, and pyrolysis analysis, Fuel 355 (2024) 129474. [23] K.J. Li, R. Khanna, J.L. Zhang, M. Barati, Z.J. Liu, T. Xu, T.J. Yang, V. Sahajwalla, Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques, Energy Fuels 29 (11) (2015) 7178-7189. [24] Y. Song, Y.M. Zhu, W. Li, Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite, Appl. Surf. Sci. 396 (2017) 291-302. [25] B. Li, W. Zhang, Z.H. Xie, X.J. Chen, Y. Cui, FTIR and XRD microscopic characterisation of coal samples with different degrees of metamorphism, J. Mol. Struct. 1309 (2024) 138270. [26] Y.K. Xiong, L.J. Jin, Y. Li, Y. Zhou, H.Q. Hu, Structural features and pyrolysis behaviors of extracts from microwave-assisted extraction of a low-rank coal with different solvents, Energy Fuels 33 (1) (2019) 106-114. [27] D. Wu, H. Zhang, G.Q. Hu, W.Y. Zhang, Fine characterization of the macromolecular structure of Huainan coal using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM techniques, Molecules 25 (11) (2020) 2661. [28] Q.T. Zhang, G. Zhou, Y.Y. Hu, M.Y. Xing, R. Zhang, P.F. Wang, S.Y. Hu, Microwetting dynamic behavior and mechanism for coal dust based on low field NMR method: a case study, Fuel 297 (2021) 120702. [29] M. Baysal, A. Yurum, B. Yildiz, Y. Yurum, Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction, Int. J. Coal Geol. 163 (2016) 166-176. [30] Z.K. Li, X.Y. Wei, H.L. Yan, Z.M. Zong, Insight into the structural features of Zhaotong lignite using multiple techniques, Fuel 153 (2015) 176-182. [31] Y.Y. Xu, Z.Q. Sun, X. Fan, F.Y. Ma, P.N. Kuznetsov, B. Chen, J.F. Wang, Building methodology for evaluating the effects of direct coal liquefaction using coal structure-chemical index, Fuel 305 (2021) 121568. [32] Q.M. Shi, S.D. Cui, S.M. Wang, Y.C. Mi, Q. Sun, S.Q. Wang, C.Y. Shi, J.Z. Yu, Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment, Energy 254 (2022) 124392. [33] G.Y. Li, A.Q. Li, H. Zhang, J.P. Wang, S.Y. Chen, Y.H. Liang, Theoretical study of the CO formation mechanism in the CO2 gasification of lignite, Fuel 211 (2018) 353-362. |