[1] M. Hu, K. Guo, H.Q. Zhou, W.K. Zhu, L.W. Deng, L.C. Dai, Techno-economic assessment of swine manure biochar production in large-scale piggeries in China, Energy 308 (2024) 133037. [2] M. Qaswar, Y.R. Liu, J. Huang, L. Kaillou, M. Mudasir, Z.Z. Lv, H.Q. Hou, X.J. Lan, J.H. Ji, W. Ahmed, D.C. Li, H.M. Zhang, Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil, J. Soils Sediments 20 (4) (2020) 2093-2106. [3] H.Y. Fan, C.H. Li, W.X. Zhang, C.X. Liu, O.K. Abass, L. Liu, X. Huang, Y.J. Sun, H.W. Wang, M.W. Gesiye, W.S. Chen, Evaluation of pollution potential in swine manure across growth stages: Impact of dietary nutrients and management strategies, Sci. Total Environ. 958 (2025) 177942. [4] Z.Q. Chen, W. Liu, T. Qin, M.T. Wu, Z.W. Li, Y.L. Zhang, D.S. Wu, E. Abakumov, E. Chebykina, Y. Zhang, J.J. Dai, H.Q. Xiao, X.C. Xie, M. Kong, Phosphorus flow characteristics in the waste system of Poyang Lake Watershed over the past 70 years, Sci. Total Environ. 941 (2024) 173704. [5] J. Meng, H.L. Zhang, Z.H. Cui, H.P. Guo, O. Masek, B. Sarkar, H.L. Wang, N. Bolan, S.D. Shan, Comparative study on the characteristics and environmental risk of potentially toxic elements in biochar obtained via pyrolysis of swine manure at lab and pilot scales, Sci. Total Environ. 825 (2022) 153941. [6] Q.Q. Lang, M.J. Chen, Y.C. Guo, Z.G. Liu, C. Gai, Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk, J. Environ. Manage. 234 (2019) 97-103. [7] X.R. Wang, X. Zhang, N. Li, Z.Z. Yang, B.X. Li, X.L. Zhang, H.N. Li, Prioritized regional management for antibiotics and heavy metals in animal manure across China, J. Hazard. Mater. 461 (2024) 132706. [8] R. Wang, M.X. Chen, F. Feng, J.Y. Zhang, Q.W. Sui, J. Tong, Y.S. Wei, D.B. Wei, Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion, Bioresour. Technol. 238 (2017) 57-69. [9] X.L. Guo, J. Gu, H. Gao, Q.J. Qin, Z.X. Chen, L. Shao, L. Chen, H.L. Li, W.J. Zhang, S.N. Chen, J. Liu, Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting, Bioresour. Technol. 108 (2012) 140-148. [10] R. Anjum, E. Grohmann, N. Krakat, Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances, Chemosphere 168 (2017) 1637-1647. [11] R.P. Ipiales, A. Sarrion, E. Diaz, M.A. de la Rubia, E. Diaz-Portuondo, C.J. Coronella, A.F. Mohedano, Swine manure management by hydrothermal carbonization: Comparative study of batch and continuous operation, Environ. Res. 245 (2024) 118062. [12] S.D. Ding, B.Y. Wang, Y.Y. Feng, H.B. Fu, Y.F. Feng, H.F. Xie, L.H. Xue, Livestock manure-derived hydrochar improved rice paddy soil nutrients as a cleaner soil conditioner in contrast to raw material, J. Clean. Prod. 372 (2022) 133798. [13] X.M. Wu, Z.M. Huang, J.W. Chen, Parameter-optimized hydrothermal carbonization of swine manure for carbon recovery integrated antibiotic degradation and derived wastewater fertilization, Energy 324 (2025) 136059. [14] X.H. Chen, X.X. Fan, K.P. Gao, Y. Cheng, K. Zhang, L.Y. Liu, L.F. Fang, J.H. Park, X.P. Chen, R. Xiao, Impacts of EDTA on the fate of nutrients and heavy metals during the hydrothermal carbonization of poultry manure, J. Environ. Chem. Eng. 11 (3) (2023) 110061. [15] H.E.B. Brian, Z.T. Bi, L.D. Chen, Assessment of heavy metals in hydrochar produced by hydrothermal carbonization of dairy manure, Front. Agr. Sci. Eng. (2023) 0/first_page>. [16] S.H. Li, D.S. Zou, L.C. Li, L. Wu, F. Liu, X.Y. Zeng, H. Wang, Y.F. Zhu, Z.H. Xiao, Evolution of heavy metals during thermal treatment of manure: a critical review and outlooks, Chemosphere 247 (2020) 125962. [17] Z.T. Feng, J.B. Xiong, G.F. Wang, L. Li, C.F. Zhou, C.H. Zhou, H.J. Huang, Treatment of swine manure by hydrothermal carbonization: The influential effect and preliminary mechanism of surfactants, Sci. Total Environ. 946 (2024) 174233. [18] J.X. Wang, S.W. Chen, F.Y. Lai, S.Y. Liu, J.B. Xiong, C.F. Zhou, Yi-Yu, H.J. Huang, Microwave-assisted hydrothermal carbonization of pig feces for the production of hydrochar, J. Supercrit. Fluids 162 (2020) 104858. [19] J.B. Xiong, Z.Q. Pan, X.F. Xiao, H.J. Huang, F.Y. Lai, J.X. Wang, S.W. Chen, Study on the hydrothermal carbonization of swine manure: The effect of process parameters on the yield/properties of hydrochar and process water, J. Anal. Appl. Pyrolysis 144 (2019) 104692. [20] Y. Wang, C.B. Yuan, K. Zhang, J.Y. Tong, N.J. Ma, M.M. Ali, Y.D. Xu, Z.D. Liu, Rapid humification of biomass via hydrothermal conversion: a comprehensive review, Green Chem. 27 (6) (2025) 1588-1603. [21] Y.C. Shao, Z.H. Li, Y.Y. Long, J. Zhao, W.Z. Huo, Z.R. Luo, W.J. Lu, Direct humification of biowaste with hydrothermal technology: a review, Sci. Total Environ. 908 (2024) 168232. [22] F. Yang, M. Antonietti, The sleeping giant: a polymer View on humic matter in synthesis and applications, Prog. Polym. Sci. 100 (2020) 101182. [23] F. Yang, M. Antonietti, Artificial humic acids: sustainable materials against climate change, Adv. Sci. 7 (5) (2020) 1902992. [24] C.X. Song, S.Q. Sun, B. Xia, Q.W. Zhang, L.J. Liu, Y. Hidawa, T.X. Li, L.A. Zhou, Y. Gao, S.Q. Yang, W. Zhang, Enhanced maturation and heavy metal stabilization by humic substance addition during dredged sediments composting, J. Environ. Chem. Eng. 13 (4) (2025) 117438. [25] B.R. Moura, V.S. Santos, G. Metzker, O.P. Ferreira, M.C. Bisinoti, M. Boscolo, A.B. Moreira, Oxidation of hydrochar produced from byproducts of the sugarcane industry for the production of humic-like substances: Characterization and interaction study with Cu(II), Chemosphere 324 (2023) 138260. [26] W.J. Xiong, M.Y. Zhang, Y.Y. Wei, D. Song, Y.P. Luo, J.T. Wang, S. Cheng, R. Xiao, Co-hydrothermal carbonization of lignocellulosic biomass and swine manure for humic substance abundant target products: Impacts of hydrothermal temperature and feedstock composition, J. Environ. Chem. Eng. 13 (3) (2025) 116280. [27] Z.Q. Pan, H.J. Huang, C.F. Zhou, F.Y. Lai, X.W. He, J.B. Xiong, X.F. Xiao, Distribution and transformation behaviors of heavy metals during liquefaction process of sewage sludge in ethanol-water mixed solvents, J. Cent. South Univ. 26 (10) (2019) 2771-2784. [28] X.Z. Yuan, H.J. Huang, G.M. Zeng, H. Li, J.Y. Wang, C.F. Zhou, H.N. Zhu, X.K. Pei, Z.F. Liu, Z.T. Liu, Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge, Bioresour. Technol. 102 (5) (2011) 4104-4110. [29] P.Z. Zhang, X.X. Zhang, Y.F. Li, L.J. Han, Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure, Bioresour. Technol. 302 (2020) 122850. [30] T. Yang, H.J. Huang, F.Y. Lai, Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China, Trans. Nonferrous Met. Soc. China 27 (10) (2017) 2249-2259. [31] X.F. Xiao, Y.C. Chang, F.Y. Lai, H.S. Fang, C.F. Zhou, Z.Q. Pan, J.X. Wang, Y.J. Wang, X. Yin, H.J. Huang, Effects of rice straw/wood sawdust addition on the transport/conversion behaviors of heavy metals during the liquefaction of sewage sludge, J. Environ. Manage. 270 (2020) 110824. [32] H.J. Huang, X.Z. Yuan, The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200 (2016) 991-998. [33] Z.M. Luo, X.Y. Huang, C.F. Zhou, M. Jiang, X.P. Liu, H.J. Huang, Migration/transformation characteristics of heavy metals and polycyclic aromatic hydrocarbons in the co-liquefaction treatment of pig manure and lignocellulosic biomass, Chin. J. Chem. Eng. 82 (2025) 222-234. [34] H.J. Huang, X.Z. Yuan, G.M. Zeng, H.N. Zhu, H. Li, Z.F. Liu, H.W. Jiang, L.J. Leng, W.K. Bi, Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge, Bioresour. Technol. 102 (22) (2011) 10346-10351. [35] E.B. de Sousa, J.B. Netto-Ferreira, C.M. Barra, B.J.R. Alves, O.R. La, J.G. Rocha Junior, Sustainable wet method for determination of total organic carbon in soils using potassium permanganate as a substitute for potassium dichromate, J. Soil Sci. Plant Nutr. 25 (1) (2025) 322-330. [36] X.M. Chen, D.Q. Zhang, G.H. Liang, Q.Y. Qiu, J.X. Liu, G.Y. Zhou, S.Z. Liu, G.W. Chu, J.H. Yan, Effects of precipitation on soil organic carbon fractions in three subtropical forests in Southern ChinaFree, J. Plant Ecol. 9 (1) (2016) 10-19. [37] C. Zaccone, P. Soler-Rovira, C. Plaza, C. Cocozza, T.M. Miano, Variability in As, Ca, Cr, K, Mn, Sr, and Ti concentrations among humic acids isolated from peat using NaOH, Na4P2O7 and NaOH+Na4P2O7 solutions, J. Hazard. Mater. 167 (1-3) (2009) 987-994. [38] Q.Q. Lang, Y.C. Guo, Q.F. Zheng, Z.G. Liu, C. Gai, Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior, Bioresour. Technol. 266 (2018) 242-248. [39] Z.H. Sun, J. Li, X.J. Wang, S.Q. Xia, J.F. Zhao, Enhanced heavy metal stabilization and phosphorus retention during the hydrothermal carbonization of swine manure by in situ formation of MgFe2O4, Waste Manag. 174 (2024) 96-105. [40] H. Luisa de Castro e Silva, S. Ghysels, A.A. Robles-Aguilar, C. Akyol, F. Ronsse, E. Meers, Hydrothermal carbonisation of manure-derived digestates: chemical properties and heavy metals distribution in end-products, Chem. Eng. J. 496 (2024) 154110. [41] W.S. Shi, C.G. Liu, D.H. Ding, Z.F. Lei, Y.N. Yang, C.P. Feng, Z.Y. Zhang, Immobilization of heavy metals in sewage sludge by using subcritical water technology, Bioresour. Technol. 137 (2013) 18-24. [42] Y.X. Zhang, W.Q. Ma, X. Sun, J. Jiang, D.P. Li, G.M. Tang, W.L. Xu, H.T. Jia, Biochar aged for five years altered carbon fractions and enzyme activities of sandy soil, Land 12 (8) (2023) 1645. [43] C.F. Song, S.D. Shan, C. Yang, C. Zhang, X.Q. Zhou, Q. Ma, K. Yrjala, H.B. Zheng, Y.C. Cao, The comparison of dissolved organic matter in hydrochars and biochars from pig manure, Sci. Total Environ. 720 (2020) 137423. [44] K. Wu, Y. Gao, G.K. Zhu, J.J. Zhu, Q.X. Yuan, Y.Q. Chen, M.Z. Cai, L. Feng, Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures, J. Anal. Appl. Pyrolysis 127 (2017) 335-342. [45] R.P. Ipiales, A.F. Mohedano, E. Diaz-Portuondo, E. Diaz, M.A. de la Rubia, Co-hydrothermal carbonization of swine manure and lignocellulosic waste: a new strategy for the integral valorization of biomass wastes, Waste Manag. 169 (2023) 267-275. [46] Y.N. Bai, R. Huang, S. Li, X.L. Li, Q.J. Fan, S.Q. Liu, L.N. Hu, Potential of calcium-modified biochar for soil nutrient and carbon sequestration in citrus orchards, Agriculture 14 (12) (2024) 2222. [47] T. Sun, G. Gao, W.H. Yang, Y.B. Sun, Q.Q. Huang, L. Wang, X.F. Liang, High-efficiency remediation of Hg and Cd co-contaminated paddy soils by Fe-Mn oxide modified biochar and its microbial community responses, Biochar 6 (1) (2024) 57. [48] M.H. Jiang, C.B. Li, W.C. Gao, K. Cai, Y. Tang, J.Z. Cheng, Comparison of long-term effects of biochar application on soil organic carbon and its fractions in two ecological sites in Karst regions, Geoderma Reg. 28 (2022) e00477. [49] B.J. Wu, M. Zhang, Z. Zhai, H.X. Dai, M.M. Yang, Y.L. Zhang, T.B. Liang, Soil organic carbon, carbon fractions, and microbial community under various organic amendments, Sci. Rep. 14 (1) (2024) 25431. [50] R.P. Ipiales, D. Pimentel-Betancurt, E. Diaz, A. de la Rubia, J.J. Rodriguez, A.F. Mohedano, Energy recovery from garden and park waste by hydrothermal carbonization with process water recycling, ACS Sustainable Chem. Eng. 12 (13) (2024) 5229-5240. [51] J.H. Hsu, S.L. Lo, Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure, Environ. Pollut. 104 (2) (1999) 189-196. [52] Y.N. Shan, J.H. Chen, L. Wang, F. Li, X.H. Fu, Y.Q. Le, Influences of adding easily degradable organic waste on the minimization and humification of organic matter during straw composting, J. Environ. Sci. Health B 48 (5) (2013) 384-392. [53] N. Shi, Q.Y. Liu, R.M. Ju, X. He, Y.L. Zhang, S.Y. Tang, L.L. Ma, Condensation of α-carbonyl aldehydes leads to the formation of solid humins during the hydrothermal degradation of carbohydrates, ACS Omega 4 (4) (2019) 7330-7343. [54] F. Yang, S.S. Zhang, K. Cheng, M. Antonietti, A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation, Sci. Total Environ. 686 (2019) 1140-1151. [55] K. Jindo, T. Sonoki, K. Matsumoto, L. Canellas, A. Roig, M.A. Sanchez-Monedero, Influence of biochar addition on the humic substances of composting manures, Waste Manag. 49 (2016) 545-552. [56] Y. Zhou, A. Selvam, J.W.C. Wong, Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues, Bioresour. Technol. 168 (2014) 229-234. [57] X.T. Song, Y.X. Guo, X.Y. Yang, P. Zhang, B.F. Wang, Influence of coal slime on migration behavior and ecological risk of heavy metals during hydrothermal carbonation of sewage sludge, J. Environ. Chem. Eng. 13 (1) (2025) 115031. [58] G.C. Shan, J.Q. Xu, Z.W. Jiang, M.Q. Li, Q.L. Li, The transformation of different dissolved organic matter subfractions and distribution of heavy metals during food waste and sugarcane leaves co-composting, Waste Manag. 87 (2019) 636-644. [59] T. Zhou, L.H. Wu, Y.M. Luo, P. Christie, Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils, Environ. Pollut. 232 (2018) 514-522. |