[1] K. Nagarajan, B.P. Reddy, S. Ghosh, G. Ravisankar, K.S. Mohandas, U.K. Mudali, K.V.G. Kutty, K.V. Kasi Viswanathan, C.A. Babu, P. Kalyanasundaram, P.R. Vasudeva Rao, B. Raj, Development of pyrochemical reprocessing for spent metal fuels, Energy Procedia 7 (2011) 431-436. [2] E.Y. Choi, S.M. Jeong, Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology, Prog. Nat. Sci. Mater. Int. 25 (6) (2015) 572-582. [3] A. Merwin, M.A. Williamson, J.L. Willit, D. Chidambaram, Review: metallic lithium and the reduction of actinide oxides, J. Electrochem. Soc. 164 (8) (2017) H5236-H5246. [4] Y. Sakamura, Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO2 in LiCl salt bath, J. Nucl. Mater. 412 (1) (2011) 177-183. [5] E.Y. Choi, C.Y. Won, J.S. Cha, W. Park, H.S. Im, S.S. Hong, J.M. Hur, Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds, J. Nucl. Mater. 444 (1-3) (2014) 261-269. [6] S.D. Herrmann, S.X. Li, B.E. Serrano-Rodriguez, Observations of oxygen ion behavior in the lithium-based electrolytic reduction of uranium oxide, Idaho National Lab. (INL), Idaho Falls, ID (United States), 2009. https://www.osti.gov/biblio/968570 (accessed January 2, 2024). [7] T.B. Joseph, N. Sanil, K.S. Mohandas, K. Nagarajan, A study of graphite as anode in the electro-deoxidation of solid UO2 in LiCl-Li2O melt, J. Electrochem. Soc. 162 (6) (2015) E51-E58. [8] B.H. Park, S.B. Park, S.M. Jeong, C.S. Seo, S.W. Park, Electrolytic reduction of spent oxide fuel in a molten LiCl-Li2O system, J. Radioanal. Nucl. Chem. 270 (3) (2006) 575-583. [9] L. Martinot, J. Fuger, Determination of solubility products of various actinide oxides in the (Na-K)Cl AND (Li-K)Cl eutectics and calculation of new potential-PO2- diagrams, J. Less Common Met. 120 (2) (1986) 255-266. [10] A. Bengtson, H.O. Nam, S. Saha, R. Sakidja, D. Morgan, First-principles molecular dynamics modeling of the LiCl-KCl molten salt system, Comput. Mater. Sci. 83 (2014) 362-370. [11] J. Song, S.P. Shi, X.J. Li, L.M. Yan, First-principles molecular dynamics modeling of UCl 3 in LiCl-KCl eutectic, J. Mol. Liq. 234 (2017) 279-286. [12] J. Song, X.J. Li, S.P. Shi, L.M. Yan, T. Jiang, S.M. Peng, Towards the calculations of redox potentials in molten LiCl-KCl eutectic by ensemble averages based on first principles molecular dynamics, Electrochim. Acta 248 (2017) 462-469. [13] B. Li, S. Dai, D.E. Jiang, First-principles molecular dynamics simulations of UCln-MgCl2 (n = 3, 4) molten salts, Phys. Chem. Chem. Phys. 24 (39) (2022) 24281-24289. [14] G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15-50. [15] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter 54 (16) (1996) 11169-11186. [16] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868. [17] D.A. Andersson, B.W. Beeler, Ab initio molecular dynamics (AIMD) simulations of NaCl, UCl3 and NaCl-UCl3 molten salts, Journal of Nuclear Materials 568 (2022) 153836. https://doi.org/10.1016/j.jnucmat.2022.153836. [18] D.A. Andersson, B.W. Beeler, Ab initio molecular dynamics (AIMD) simulations of NaCl, UCl3 and NaCl-UCl3 molten salts, Journal of Nuclear Materials 568 (2022) 153836. https://doi.org/10.1016/j.jnucmat.2022.153836. [19] Gegentana, L. Cui, L.P. Zhou, X.Z. Du, A deep potential molecular dynamics study on the ionic structure and transport properties of NaCl-CaCl2 molten salt, Ionics 30 (1) (2024) 285-295. [20] J.J. Liu, X. Xiao, Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application, Energy 282 (2023) 128732. [21] J.L. Xu, F. Tian, F.X. Zhu, Z.Y. Pang, Z.S. Ma, H. Miao, X.Q. Zhang, C.Y. Han, Q. Xu, X.L. Zou, X.G. Lu, Molecular dynamics simulations of ionic transport, local structures, and physicochemical properties of multi-component NaCl-MgCl2-CaCl2-FeCl2/FeCl3 molten salt systems, Mater. Today Commun. 45 (2025) 112271. [22] Weast, RobertC, CRC handbook of chemistry and physics, CRC handbook of chemistry and physics, 1988. http://bib-pubdb1.desy.de/record/363512 (accessed March 25, 2023). [23] B. Li, S. Dai, D.E. Jiang, Molecular dynamics simulations of structural and transport properties of molten NaCl-UCl3 using the polarizable-ion model, J. Mol. Liq. 299 (2020) 112184. [24] G.J. Janz, C.B. Allen, N.P. Bansal, R.M. Murphy, R.P.T. Tomkins, Physical properties data compilations relevant to energy storage, 2. Molten salts: Data on single and multi-component salt systems, National Standard Reference Data System 80 (1979) 10643. [25] D.S. Maltsev, V.A. Volkovich, B.D. Vasin, E.N. Vladykin, An electrochemical study of uranium behaviour in LiCl-KCl-CsCl eutectic melt, J. Nucl. Mater. 467 (2015) 956-963. [26] E.Y. Choi, J.W. Lee, J.J. Park, J.M. Hur, J.K. Kim, K.Y. Jung, S.M. Jeong, Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt, Chem. Eng. J. 207 (2012) 514-520. [27] X.J. Li, J. Song, S.P. Shi, L.M. Yan, Z.C. Zhang, T. Jiang, S.M. Peng, Dynamic fluctuation of U3+ coordination structure in the molten LiCl-KCl eutectic via first principles molecular dynamics simulations, J. Phys. Chem. A 121 (3) (2017) 571-578. [28] B. Yoo, V. Ri, S. Kwon, S. Cho, H.H. Nersisyan, K.T. Park, J. Lee, Direct electrochemical reduction of natural ilmenite into ferrotitanium alloys in a molten salt of LiCl-Li2O, J. Electrochem. Soc. 168 (2) (2021) 026513. [29] Ángel Mulero (ed.), Theory and Simulation of Hard-Sphere Fluids and Related Systems, Springer Berlin, Heidelberg. [30] H. Pfeiffer, J. Sanchez-Sanchez, L. Javier Alvarez, Lithium and tritium diffusion in lithium oxide (Li2O), a molecular dynamics simulation, J. Nucl. Mater. 280 (3) (2000) 295-303. [31] Y. Okamoto, F. Kobayashi, T. Ogawa, Structure and dynamic properties of molten uranium trichloride, J. Alloys Compd. 271 (1998) 355-358. [32] H.A. Levy, P.A. Agron, M.A. Bredig, M.D. Danford, X-ray and neutron diffraction studies of molten alkali halides, Ann. N Y Acad. Sci. 79 (11) (1960) 762-780. [33] T. Jiang, N. Wang, S.M. Peng, L.M. Yan, Structural and transport characteristics of UCl3 in molten LiCl-KCl mixture: a molecular dynamics simulation study, Chem. Res. Chin. Univ. 31 (2) (2015) 281-287. [34] J. Huang, L.X. Sang, Q.F. Yang, Y.T. Wu, Molecular dynamics simulation of the microstructure and physical properties of KNO2-KNO3-K2CO3, Sol. Energy Mater. Sol. Cells 277 (2024) 113150. [35] W. Tang, E. Sanville, G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter 21 (8) (2009) 084204. [36] HSC Chemistry, (n.d.),https://hsc-chemistry.com/(accessed July 21, 2023). [37] J. Song, X.J. Li, Y. Zhang, S.P. Shi, L.M. Yan, T. Jiang, S.M. Peng, On the first principles calculation of redox potential in molten LiCl-KCl eutectic based on adiabatic substitution, J. Electrochem. Soc. 164 (12) (2017) H846-H853. [38] J.K. Noerskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108 (46) (2004) 17886-17892. [39] J.S. Zhang, Electrochemistry of actinides and fission products in molten salts: Data review, J. Nucl. Mater. 447 (1-3) (2014) 271-284. [40] F. Caligara, L. Martinot, G. Duyckaerts, Contribution to the knowledge of the electrochemistry of uranium in molten LiCl-KCl eutectic: I. the redox potential of the couple U(IV)/U(III), Bull. Des Societes Chim. Belg. 76 (1-2) (1967) 5-14. |