[1] G. Zubi, R. Dufo-Lopez, M. Carvalho, and G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives, Renew. Sust. Energ. Rev. 89 (2018) 292-308. [2] B. Nykvist, F. Sprei, M. Nilsson, Assessing the progress toward lower priced long range battery electric vehicles, Energy Policy 124 (2019) 144-155. [3] C. Grosjean, P.H. Miranda, M. Perrin, P. Poggi, Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renew. Sustain. Energy Rev. 16 (3) (2012) 1735-1744. [4] H.S. Hirsh, Y.X. Li, D.H.S. Tan, M.H. Zhang, E.Y. Zhao, Y.S. Meng, Sodium-ion batteries paving the way for grid energy storage, Adv. Energy Mater. 10 (32) (2020) 2001274. [5] V. Ramadesigan, V. Boovaragavan, M. Arabandi, K.J. Chen, H. Tsukamoto, R. Braatz, V. Subramanian, Parameter estimation and capacity fade analysis of lithium-ion batteries using first-principles-based efficient reformulated models, ECS Trans. 19 (16) (2009) 11-19. [6] X.Y. Li, C.G. Yuan, X.H. Li, Z.P. Wang, State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression, Energy 190 (2020) 116467. [7] X.N. Feng, C.H. Weng, X.M. He, X.B. Han, L.G. Lu, D.S. Ren, M.G. Ouyang, Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine, IEEE Trans. Veh. Technol. 68 (9) (2019) 8583-8592. [8] L. Cai, J.H. Meng, D.I. Stroe, G.Z. Luo, R. Teodorescu, An evolutionary framework for lithium-ion battery state of health estimation, J. Power Sources 412 (2019) 615-622. [9] J. Kim, H.Y. Chun, M. Kim, J. Yu, K. Kim, T. Kim, S. Han, Data-driven state of health estimation of Li-ion batteries with RPT-reduced experimental data, IEEE Access 7 (2019) 106987-106997. [10] C. Rojas, L. Oca, I. Lopetegi, U. Iraola, J. Carrasco, A critical look at efficient parameter estimation methodologies of electrochemical models for Lithium-Ion cells, J. Energy Storage 80 (2024) 110384. [11] C. Rojas, L. Oca, I. Lopetegi, U. Iraola, J. Carrasco, A critical look at efficient parameter estimation methodologies of electrochemical models for Lithium-Ion cells, J. Energy Storage 80 (2024) 110384. [12] J. Newman, W. Tiedemann, Porous-electrode theory with battery applications, AlChE. J. 21 (1) (1975) 25-41. [13] M. Ecker, T.K.D. Tran, P. Dechent, S. Kabitz, A. Warnecke, D.U. Sauer, Parameterization of a physico-chemical model of a lithium-ion battery, J. Electrochem. Soc. 162 (9) (2015) A1836-A1848. [14] M. Ecker, S. Kabitz, I. Laresgoiti, D.U. Sauer, Parameterization of a physico-chemical model of a lithium-ion battery, J. Electrochem. Soc. 162 (9) (2015) A1849-A1857. [15] L. Oca, E. Miguel, E. Agirrezabala, A. Herran, E. Gucciardi, L. Otaegui, E. Bekaert, A. Villaverde, U. Iraola, Physico-chemical parameter measurement and model response evaluation for a pseudo-two-dimensional model of a commercial lithium-ion battery, Electrochim. Acta 382 (2021) 138287. [16] J. Schmalstieg, C. Rahe, M. Ecker, D.U. Sauer, Full cell parameterization of a high-power lithium-ion battery for a physico-chemical model: part I. physical and electrochemical parameters, J. Electrochem. Soc. 165 (16) (2018) A3799-A3810. [17] J. Schmalstieg, D.U. Sauer, Full cell parameterization of a high-power lithium-ion battery for a physico-chemical model: part II. thermal parameters and validation, J. Electrochem. Soc. 165 (16) (2018) A3811-A3819. [18] S. Santhanagopalan, Q.Z. Guo, R.E. White, Parameter estimation and model discrimination for a lithium-ion cell, J. Electrochem. Soc. 154 (3) (2007) A198. [19] J. Vazquez-Arenas, L.E. Gimenez, M. Fowler, T. Han, S.K. Chen, A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis, Energy Convers. Manag. 87 (2014) 472-482. [20] M.A. Rahman, S. Anwar, A. Izadian, Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method, J. Power Sources 307 (2016) 86-97. [21] L.Q. Zhang, L.X. Wang, G. Hinds, C. Lyu, J. Zheng, J.F. Li, Multi-objective optimization of lithium-ion battery model using genetic algorithm approach, J. Power Sources 270 (2014) 367-378. [22] A. Jokar, B. Rajabloo, M. Desilets, M. Lacroix, An inverse method for estimating the electrochemical parameters of lithium-ion batteries, J. Electrochem. Soc. 163 (14) (2016) A2876-A2886. [23] S.C. Ding, Y.D. Li, H.F. Dai, L. Wang, X.M. He, Accurate model parameter identification to boost precise aging prediction of lithium-ion batteries: a review, Adv. Energy Mater. 13 (39) (2023) 2301452. [24] J.F. Li, L.X. Wang, C. Lyu, E.H. Liu, Y.J. Xing, M. Pecht, A parameter estimation method for a simplified electrochemical model for Li-ion batteries, Electrochim. Acta 275 (2018) 50-58. [25] B. Rajabloo, A. Jokar, M. Desilets, M. Lacroix, An inverse method for estimating the electrochemical parameters of lithium-ion batteries, J. Electrochem. Soc. 164 (2) (2017) A99-A105. [26] Z.X. Sun, W.L. He, J.L. Wang, X. He, State of health estimation for lithium-ion batteries with deep learning approach and direct current internal resistance, Energies 17 (11) (2024) 2487. [27] X.D. Xia, W. Wu, Z.C. Li, X.L. Han, X.B. Xue, G.Z. Xiao, T. Guo, State of charge estimation for commercial Li-ion battery based on simultaneously strain and temperature monitoring over optical fiber sensors, IEEE Trans. Instrum. Meas. 73 (2024) 2516411. [28] U. Khan, S. Kirmani, Y. Rafat, M.U. Rehman, M.S. Alam, Improved deep learning based state of charge estimation of lithium ion battery for electrified transportation, J. Energy Storage 91 (2024) 111877. [29] M. Kim, H.Y. Chun, J. Kim, K. Kim, J. Yu, T. Kim, S. Han, Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search, Appl. Energy 254 (2019) 113644. [30] H.Y. Chun, J. Kim, J. Yu, S. Han, Real-time parameter estimation of an electrochemical lithium-ion battery model using a long short-term memory network, IEEE Access 8 (2020) 81789-81799. [31] L. Xu, X.K. Lin, Y. Xie, X.S. Hu, Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification, Energy Storage Mater. 45 (2022) 952-968. [32] J. Kim, H.Y. Chun, J. Baek, S. Han, Parameter identification of lithium-ion battery pseudo-2-dimensional models using genetic algorithm and neural network cooperative optimization, J. Energy Storage 45 (2022) 103571. [33] J. Kim, H.Y. Chun, H. Kim, M. Lee, S. Han, Strategically switching metaheuristics for effective parameter estimation of electrochemical lithium-ion battery models, J. Energy Storage 64 (2023) 107094. [34] G. Di Luca, G. Di Blasio, A. Gimelli, D.A. Misul, Review on battery state estimation and management solutions for next-generation connected vehicles, Energies 17 (1) (2024) 202. [35] R.B. Smith, E. Khoo, M.Z. Bazant, Intercalation kinetics in multiphase-layered materials, J. Phys. Chem. C 121 (23) (2017) 12505-12523. [36] K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Physics-based modeling of sodium-ion batteries part II. Model and validation, Electrochim. Acta 404 (2022) 139764. [37] K. Chayambuka, M. Jiang, G. Mulder, D.L. Danilov, P.H.L. Notten, Physics-based modeling of sodium-ion batteries part I: Experimental parameter determination, Electrochim. Acta 404 (2022) 139726. [38] C.H. Chen, F. Brosa Planella, K. O’Regan, D. Gastol, W.D. Widanage, E. Kendrick, Development of experimental techniques for parameterization of multi-scale lithium-ion battery models, J. Electrochem. Soc. 167 (8) (2020) 080534. [39] M.M. Loghavi, A. Nahvibayani, M.H. Moghim, M. Babaiee, S. Baktashian, R. Eqra, Electrochemical evaluation of LiNi0.5Mn0.3Co0.2O2, LiNi0.6Mn0.2Co0.2O2, and LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium-ion batteries: from half-coin cell to pouch cell, Monatsh. Fur Chem. Chem. Mon. 153 (12) (2022) 1197-1212. |