[1] X. Sun, M.G. Ouyang, H. Hao, Surging lithium price will not impede the electric vehicle boom, Joule 6 (8) (2022) 1738-1742. [2] X.Y. Zhao, S. Yang, Y.D. Hou, H.Q. Gao, Y.F. Wang, D.A. Gribble, V.G. Pol, Recent progress on key materials and technical approaches for electrochemical lithium extraction processes, Desalination 546 (2023) 116189. [3] X.Y. Zhao, H.C. Yang, Y.F. Wang, Z.L. Sha, Review on the electrochemical extraction of lithium from seawater/brine, J. Electroanal. Chem. 850 (2019) 113389. [4] A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Lithium recovery from brine: recent developments and challenges, Desalination 528 (2022) 115611. [5] Y. Zhang, W. Sun, R. Xu, L. Wang, H.H. Tang, Lithium extraction from water lithium resources through green electrochemical-battery approaches: a comprehensive review, J. Clean. Prod. 285 (2021) 124905. [6] Y. Sun, Y.H. Wang, Y. Liu, X. Xiang, Highly efficient lithium extraction from brine with a high sodium content by adsorption-coupled electrochemical technology, ACS Sustainable Chem. Eng. 9 (33) (2021) 11022-11031. [7] R. Zhu, S.X. Wang, C. Srinivasakannan, S.W. Li, S.H. Yin, L.B. Zhang, X.B. Jiang, G.L. Zhou, N. Zhang, Lithium extraction from salt lake brines with high magnesium/lithium ratio: a review, Environ. Chem. Lett. 21 (3) (2023) 1611-1626. [8] G. Liu, Z.W. Zhao, A. Ghahreman, Novel approaches for lithium extraction from salt-lake brines: a review, Hydrometallurgy 187 (2019) 81-100. [9] Y. Sun, Q. Wang, Y.H. Wang, R.P. Yun, X. Xiang, Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine, Sep. Purif. Technol. 256 (2021) 117807. [10] X.D. Zhang, K.C. Zuo, X.R. Zhang, C.Y. Zhang, P. Liang, Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review, Environ. Sci.: Water Res. Technol. 6 (2) (2020) 243-257. [11] L. Chang, Y.H. Fei, Y.H. Hu, Structurally and chemically engineered graphene for capacitive deionization, J. Mater. Chem. A 9 (3) (2021) 1429-1455. [12] B. Hu, X.H. Shang, P.F. Nie, B.S. Zhang, J.M. Yang, J.Y. Liu, Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization, J. Colloid Interface Sci. 612 (2022) 392-400. [13] G.Q. Ma, Y.S. Xu, A.J. Cai, H.J. Mao, X.Y. Zhang, D.M. Shin, L. Wang, H.J. Zhou, Binder-free LiMn2O4 nanosheets on carbon cloth for selective lithium extraction from brine via capacitive deionization, Small 20 (9) (2024) e2306530. [14] J.G. Zhou, S.H. Xiang, X.Y. Wang, D.M. Shin, H.J. Zhou, Highly selective lithium extraction from salt lake via carbon-coated lithium vanadium phosphate capacitive electrode, Chem. Eng. J. 482 (2024) 148985. [15] J.G. Zhou, Y.S. Xu, D.M. Shin, H.J. Zhou, Breaking the trade-off between capacity, stability, and selectivity for electrochemical lithium extraction via a dual-ion doping strategy, Desalination 600 (2025) 118530. [16] G. Liao, L.L. Yu, Y.F. Xia, Z.M. Wang, Z.J. Lu, J.C. Mei, H.L. Liu, C.B. Liu, High selectivity, capacity and stability for electrochemical lithium extraction on boron-doped H1.6Mn1.6O4 by tailoring lattice constant and intercalation energy, Water Res. 274 (2025) 123131. [17] K. Wang, Y. Liu, Z.B. Ding, Y.Q. Li, T. Lu, L.K. Pan, Metal-organic-frameworks-derived NaTi2(PO4)3/carbon composites for efficient hybrid capacitive deionization, J. Mater. Chem. A 7 (19) (2019) 12126-12133. [18] Y.Q. Li, Z.B. Ding, X.L. Zhang, J.L. Li, X.J. Liu, T. Lu, Y.F. Yao, L.K. Pan, Novel hybrid capacitive deionization constructed by a redox-active covalent organic framework and its derived porous carbon for highly efficient desalination, J. Mater. Chem. A 7 (44) (2019) 25305-25313. [19] Y.Q. Li, Z.B. Ding, J.F. Li, J.B. Li, T. Lu, L.K. Pan, Highly efficient and stable desalination via novel hybrid capacitive deionization with redox-active polyimide cathode, Desalination 469 (2019) 114098. [20] Y.S. Xu, H.J. Zhou, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Selective pseudocapacitive deionization of calcium ions in copper hexacyanoferrate, ACS Appl. Mater. Interfaces 12 (37) (2020) 41437-41445. [21] Q. Liu, C.Y. Zhao, M.H. Yuan, L.P. Liu, X.H. Liu, Y.J. Liu, Z.Q. Liu, L. Tong, A.G. Ying, A dynamic intercalation mechanism in pre-intercalation carbon nanosheets for capacitive deionization cells, Desalination 535 (2022) 115842. [22] C.Y. Zhang, D. He, J.X. Ma, W.W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: a review, Water Res. 128 (2018) 314-330. [23] S. Bae, S.I. Jeon, W. Lee, Y. Kim, K. Cho, Four-step constant voltage operation of hybrid capacitive deionization with composite electrodes for bifunctional deionization and lithium recovery, Desalination 565 (2023) 116883. [24] X.H. Shang, B. Hu, P.F. Nie, W. Shi, T. Hussain, J.Y. Liu, LiNi0.5Mn1.5O4-based hybrid capacitive deionization for highly selective adsorption of lithium from brine, Sep. Purif. Technol. 258 (2021) 118009. [25] Z.Z. Liu, W. Xi, H.B. Li, The feasibility of hollow echinus-like NiCo2O4 nanocrystals for hybrid capacitive deionization, Environ. Sci.: Water Res. Technol. 6 (2) (2020) 283-289. [26] A. Siekierka, B. Tomaszewska, M. Bryjak, Lithium capturing from geothermal water by hybrid capacitive deionization, Desalination 436 (2018) 8-14. [27] Y.X. Chen, Y.F. Yuan, C.L. Mo, P.F. Du, S.Y. Guo, Yolk-shell Co-glycerate@Fe-Co Prussian blue analogue spheres for high-performance lithium-ion batteries, Mater. Lett. 320 (2022) 132358. [28] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254 (8) (2008) 2441-2449. [29] P. Jiang, H.Z. Shao, L. Chen, J.W. Feng, Z.P. Liu, Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries, J. Mater. Chem. A 5 (32) (2017) 16740-16747. [30] M. Rethinasabapathy, G. Bhaskaran, S.K. Hwang, T. Ryu, Y.S. Huh, Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization, Chemosphere 336 (2023) 139256. [31] J.L. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination, Nano Lett. 19 (2) (2019) 823-828. [32] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci. 7 (5) (2014) 1597-1614. [33] V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater. 12 (6) (2013) 518-522. [34] C.J. Zhao, G.Q. Liu, N. Sun, X. Zhang, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization, Chem. Eng. J. 334 (2018) 1270-1280. [35] B.H. Hameed, A.A. Ahmad, N. Aziz, Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash, Chem. Eng. J. 133 (1-3) (2007) 195-203. [36] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process. Biochem. 34 (5) (1999) 451-465. [37] M. Dabbour, H. Jiang, B.K. Mintah, H. Wahia, R.H. He, Ultrasonic-assisted protein extraction from sunflower meal: kinetic modeling, functional, and structural traits, Innov. Food Sci. Emerg. Technol. 74 (2021) 102824. [38] F.R. Hou, W.H. Ding, W.J. Qu, A.O. Oladejo, F. Xiong, W.W. Zhang, R.H. He, H.L. Ma, Alkali solution extraction of rice residue protein isolates: influence of alkali concentration on protein functional, structural properties and lysinoalanine formation, Food Chem. 218 (2017) 207-215. [39] J.Y. Shi, Y.Y. Wang, Z.H. Li, X.W. Huang, T.T. Shen, X.B. Zou, Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features, Biosyst. Eng. 212 (2021) 458-467. [40] Z.P. Zhang, R.Y. Zhou, L.J. Ke, J.B. Li, H. Jayan, H.R. El-Seedi, X.B. Zou, Z.M. Guo, Development of multifunctional metal-organic frameworks (MOFs)-based nanofiller materials in food packaging: a comprehensive review, Trends Food Sci. Technol. 154 (2024) 104771. |