1 Plunkett Research Ltd., "Automobile Industry Introduction", Plunkett Research, Ltd. (2011). 2 Dargay, J., Gately, D., Sommer, M., "Vehicle ownership and income growth", Energy J., 28, 1960-2030 (2007) 3 Attarian, J., "The coming end of cheap oil-To Hubbert's peak and beyond", The Social Contract, 276-286 (2002) 4 The U.S. Energy Information Administration, "U.S. Gasoline and Diesel Retail Prices", June 2011. 5 Office of Transportation and Air Quality, "Emission facts: Average carbon dioxide emissions resulting from gasoline and diesel fuel", Environmental Protection Agency, USA, EPA420-F-05-001 (2005). 6 Faungnawakij, K., Kikuchi, R., Eguchi, K., "Thermodynamic evaluation of methanol steam reforming for hydrogen production", J. Power Sources, 161, 87-94 (2006) 7 Matsumura, Y., Ishibe, H., "Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen", J. Mol. Catal. A: Chem., 345, 44-53 (2011). 8 Agarwal, V., Patel, S., Pant, K.K., "H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: Transient deactivation kinetics modeling", Appl. Catal., A, 279, 155-164 (2005). 9 Christopher, B.J., Gulari, E., "Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts", Catal. Comm., 5, 431-436 (2004). 10 Cortright, R.D., Davda, R.R., Dumesic J.A., "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water", Nature, 418, 964-967 (2002). 11 Chen, W.H., Syu, Y.J., "Thermal behavior and hydrogen production of methanol steam reforming and autothermal reforming with spiral preheating", Int. J. Hydrogen Energy, 36, 3397-3408 (2011). 12 Bernardo, P., Barbieri, G., Drioli, E., "Evaluation of membrane reactor with hydrogen-selective membrane in methane steam reforming", Chem. Eng. Sci., 65, 1159-1166 (2010). 13 De Castro, J., Rivera-Tinoco, R., Bouallou, C., "Hydrogen production from natural gas: Auto-thermal reforming and CO2 Capture", Chem. Eng. Trans., 21, 163-168 (2010). 14 Appl, M., G ssling, H., "Production of synthesis gas after the steam reforming process", Chemiker Zeitung, 96 (3), 135-153 (1972). 15 Tarun, C.B., Croiset, E., Douglas, P.L., Gupta, M., Chowdhury, M.H.M., "Techno-economic study of CO2 capture from natural gas based hydrogen plants", Int. J. Greenhouse Gas Control, 1, 5561 (2007). 16 Li, Q.F., He, R.H., Jensen, J.O., Bjerrum, N.J., "Approaches and recent development of polymer", Chem. Mater., 15, 4896-4915 (2003). 17 Wang, M., Li, J., Chen, L., Lu, Y., "Miniature NH 3 cracker based on microfibrous entrapped Ni-CeO2/Al2O3 catalyst monolith for portable fuel cell power supplies", Int. J. Hydrogen Energy, 34, 1710-1716 (2009). 18 Thomas, G., Parks, G., "Potential Roles of Ammonia in a Hydrogen Economy. A Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage", U.S. Department of Energy Report, 2006[2012-4-22] http://www.hydrogen.energy.gov/pdfs/nh3_paper.pdf 19 Pérez-Hernández, R., Gutiérrez-Martínez, A., Palacios, J.Vega-Hernández, M., Rodríguez-Lugo, V., "Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2ZrO2 catalysts", Int. J. Hydrogen Energy, 36, 6601-6608 (2011). 20 Basile, A., Tereschenkob, G. F., Orekhova, N. V., Ermilova, M. M., Galluccia, F., Iulianellia, A., "An experimental investigation on methanol steam reforming with oxygen addition in a flat Pd-Ag membrane reactor", Int. J. Hydrogen Energy, 31, 1615-1622 (2006). 21 Yang, M., Li, S., Chen, G., "High-temperature steam reforming of methanol over ZnO-Al2O3 catalysts", Appl. Catal., B, 101, 409-416 (2011). 22 Yu, H., Chen, H., Pan, M., Tang, Y., Zeng, K., Peng, F., Wang, H., "Effect of the metal foam materials on the performance of methanol steam micro-reformer for fuel cells", Appl. Catal., A, 327, 106-113 (2007). 23 Fuel Cells 2000, "World hydrogen fueling stations", 2009 [2012-5-12], http://www.fuelcells.org/wp-content/uploads/2012/02/h2fuelingstations-worldl.pdf 24 Ogden, J. M., "Prospects for building a hydrogen energy infrastructure", Annu. Rev. Energy Env., 24, 227-279 (1999). 25 Eidelman, F., "Efficiency of internal combustion engine" Economy & Energy 1998 [2012-4-22] http://ecen.com/content/eee7/motoref.htm 26 Schlapbach, L., Z黷tel, A., "Hydrogen-storage materials for mobile application", Nature, 414, 353-358 (2001). 27 Wang, M.Q., Huang, H.S., "A full fuel-cycle analysis of energy and emissions impacts of transportation fuels produced from natural gas", US Department of Energy, Center for Transportation Research, Argonne National Laboratory, ANL/ESD-40 1999 [2012-4-22], http://www.transportation.anl.gov/pdfs/TA/13.pdf 28 The National Renewable Energy Laboratory, "Advanced technology and alternative fuel vehicles", U.S. Department of Energy, DOE/GO-102001-1142, FS143, 2011 [2012-4-22] http://www.nrel.gov/docs/fy01osti/27957.pdf 29 Szybist, J.P., Chakravathy, K., Stuart Daw, C., "Analysis of the impact of selected fuel thermochemical properties on internal combustion engine efficiency", Energy Fuels, DOI: 10.1021/ef2019879 (2012). 30 Ren, X., Zelenay, P., Thomas, S., Davey, J., Gottesfeld, S., "Recent advances in direct methanol fuel cells at Los Alamos National Laboratory", J. Power Sources, 86, 111-116 (2000). 31 Spath, P.L., Mann, M.K., "Life cycle assessment of hydrogen production via natural gas steam reforming", US Department of Energy, National Renewable Energy Laboratory report, NREL/TP-570-27637, 2001[2012-4-22] http://www-pord.ucsd.edu/~sgille/mae124_s06/27637.pdf 32 Hart, D., Hydrogen power-The Commercial Future of the Ultimate Fuel, Financial Times Energy Publishing, UK (1997). 33 Yu, H., Chen, H.Q., Pan, M.Q., Tang, Y., Zeng, K., Peng, F., Wang, H., "Effect of the metal foam materials on the performance of methanol steam micro-reformer for fuel cells", Appl. Catal., A, 327, 106-113 (2007). 34 Qadrdan, M., Shayegan, J., "Economic assessment of hydrogen fueling station, a case study for Iran", Renewable Energy, 33, 2525-2531 (2008). 35 Haryanto, A., Fernando, S., Murali, N., Adhikari, S., "Current status of hydrogen production techniques by steam reforming of ethanol: A review", Energy Fuels, 19, 2098-2106 (2005). 36 Natural Gas Organization, "Transportation of natural gas", Natural Gas.org, 2011 [2012-4-22], http://www.naturalgas.org/naturalgas/transport.asp 37 Aceves, S.M., Berry, G., Weisberg, A., "V.D Storage, FY 2005 progress report of DOE hydrogen program", 2005 [2012-5-16], http://www.hydrogen.energy.gov/pdfs/progress05/v_d_1_aceves.pdf 38 Kim, A.P., Stub Nielsen, C., J鵵gensen, S.L., "Membrane reforming for hydrogen", Catal. Today, 46, 193-201 (1998). 39 Wang, G., Ogden, J.M., Nicholas, M.A., "Lifecycle impacts of natural gas to hydrogen pathways on urban air quality", Int. J. Hydrogen Energy, 32, 2731-2742 (2007). 40 LI, L.X., Hurley, J. A., "Ammonia-based hydrogen source for fuel cell applications", Int. J. Hydrogen Energy, 32, 6-10 (2007). 41 Perry, R.H., Green, D.W., Perry's Chemical Engineers' Handbook, 7th edition, McGraw-Hill, New York (2007). 42 Stefanidis, G.D., Vlachos, D.G., "Methane steam reforming at microscales: Operation strategies for variable power output at millisecond contact times", AIChE J., 55, 180-191 (2009). 43 Bartels, J.R., Pate, M.B., Olson, N.K., "An economic survey of hydrogen production from conventional and alternative energy sources", Int. J. Hydrogen Energy, 35, 8371-8384 (2010). 44 Adamson, K.A., Pearson, P., "Hydrogen and methanol: A comparison of safety, economics, efficiencies and emissions", J. Power Sources, 86, 548-555 (2000). 45 Steward, D., "H2A Production Model Updates", US Department of Energy, National Renewable Energy Laboratory, 2011 [2012-4-22], http://www.hydrogen.energy.gov/pdfs/review11/pd089_steward_201 1_p.pdf 46 Stoll, R. E., von Linde, F., "Hydrogen-What are the costs?", Hydrocarbon Process., Int. Ed., 79, 42-46 (2000). 47 Chen, Y., Wang, Y., Xu, H., Xiong, G. "Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor", Appl. Catal., B, 81, 283-294 (2008). |