[1] C. Schmitz, L. Datsevitch, A. Jess, Deep desulfurization of diesel oil: kinetic studiesand process-improvement by the use of a two-phase reactor with pre-saturator,Chem. Eng. Sci. 59 (14) (2004) 2821-2829.
[2] E. Furimsky, Selection of catalysts and reactors for hydroprocessing, Appl. Catal. AGen. 171 (2) (1998) 177-206.
[3] I.V. Babich, J.A. Moulijn, Science and technology of novel processes fordeep desulfurization of oil refinery streams: a review, Fuel 82 (6) (2003)607-631.
[4] C.S. Song, X.L. Ma, New design approaches to ultra-clean diesel fuels by deepdesulfurization and deep dearomatization, Appl. Catal. B Environ. 41 (1-2) (2003)207-238.
[5] C. Song, K.M. Reddy, Mesoporous molecular sieve MCM-41 supported Co-Mocatalyst for hydrodesulfurization of dibenzothiophene in distillate fuels, Appl.Catal. A Gen. 176 (1) (1999) 1-10.
[6] X. Li, A.J. Wang, Z.C. Sun, C. Li, Y.K. Hu, Study on hydrodesulfurization kinetics ofdibenzothiophene over Ni2Wsulfides supported by siliceous MCM-41, Acta PetroleiSinica (Petroleum Processing Section) 19 (4) (2003) 1-7.
[7] T.I. Korányi, Z. Vít, D.G. Poduval, R. Ryoo, H.S. Kim, E.J.M. Hensen, SBA-15-supportednickel phosphide hydrotreating catalysts, J. Catal. 253 (1) (2008) 119-131.
[8] M. Sugioka, F. Sado, Y. Matsumoto, N. Maesaki, New hydrodesulfurization catalysts:noble metals supported on USY zeolite, Catal. Today 29 (1-4) (1996)255-259.
[9] M. Sugioka, F. Sadoa, T. Kurosakaa, X.Wang, Hydrodesulfurization over noblemetalssupported on ZSM-5 zeolites, Catal. Today 45 (1-4) (1998) 327-334.
[10] C.M. Wang, T.C. Tsai, I. Wang, Deep hydrodesulfurization over Co/Mo catalystssupported on oxides containing vanadium, J. Catal. 262 (2) (2009) 206-214.
[11] D.H. Wang, W.H. Qian, A. Ishihara, T. Kabe, Elucidation of sulfidation state andhydrodesulfurization mechanism on Mo/TiO2 catalyst using 35S radioisotope tracermethods, Appl. Catal. A Gen. 224 (1-2) (2002) 191-199.
[12] D.H. Wang, W. Li, M.H. Zhang, K. Tao, Promoting effect of fluorine on titaniasupportedcobalt-molybdenum hydrodesulfurization catalysts, Appl. Catal. A Gen.317 (1) (2007) 105-112.
[13] E. Furimsky, Metal carbides and nitrides as potential catalysts for hydroprocessing,Appl. Catal. A Gen. 240 (2003) 1-28.
[14] P.Y. Wu, S.F. Ji, L.H. Hu, J.Q. Zhu, C.Y. Li, Preparation, characterization, and catalyticproperties of the Mo2C/SBA-15 catalysts, J. Porous. Mater. 15 (2) (2008) 181-187.
[15] X.Q.Wang, P. Clark, S.T. Oyama, Synthesis, characterization, and hydrotreating activityof several iron group transition metal phosphides, J. Catal. 208 (2) (2002)321-331.
[16] Y.Y. Shu, Y.K. Lee, S.T. Oyama, Structure-sensitivity of hydrodesulfurization of 4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts, J.Catal. 236 (1) (2005) 112-121.
[17] S.T. Oyama, Novel catalysts for advanced hydroprocessing: transition metalphosphides, J. Catal. 216 (1-2) (2003) 343-352.
[18] S.T. Oyama, Y.K. Lee, The active site of nickel phosphide catalysts for thehydrodesulfurization of 4,6-DMDBT, J. Catal. 258 (2) (2008) 393-400.
[19] S.T. Oyama, T. Gott, H.Y. Zhao, Y.K. Lee, Transition metal phosphide hydroprocessingcatalysts: a review, Catal. Today 143 (1-2) (2009) 94-107.
[20] C.Q. Li, G.D. Sun, C.Y. Li, Y.J. Song, Preparation, characterization, hydrodesulfurizationand hydrodenitrogenation activities of alumina-supported tungsten phosphidecatalysts, Chin. J. Chem. Eng. 14 (2) (2006) 184-193.
[21] A.W. Burns, A.F. Gaudette, M.E. Bussell, Hydrodesulfurization properties of cobalt-nickel phosphide catalysts: Ni-rich materials are highly active, J. Catal. 260 (2)(2008) 262-269.
[22] J.A. Ojeda Nava, R. Krishna, In-situ stripping of H2S in gasoil hydrodesulphurization:reactor design considerations, Chem. Eng. Res. Des. 82 (2) (2004) 208-214.
[23] R.K. Edvinsson, A. Cybulsk, A comparison between the monolithic reactor and thetrickle-bed reactor for liquid-phase hydrogenations, Catal. Today 24 (1-2) (1995)173-179.
[24] M. Xu, H. Liu, C.Y. Li, Y. Zhou, S.F. Ji, Connection between liquid distribution andgas-liquid mass transfer in monolithic bed, Chin. J. Chem. Eng. 19 (5) (2011)738-746.
[25] T.A. Nijhuis, M.T. Kreutzer, A.C.J. Romijn, F. Kapteijn, J.A. Moulijn, Monolithiccatalysts as efficient three-phase reactors, Chem. Eng. Sci. 56 (3) (2001) 823-829.
[26] S. Roy, T. Bauer, M. Al-Dahhan, P. Lehner, T. Turek,Monoliths as multiphase reactors:a review, AICHE J. 50 (2004) 2918-2938.
[27] H. Marwana, J.M. Winterbottom, The selective hydrogenation of butyne-1,4-diol bysupported palladiums: a comparative study on slurry, fixed bed, and monolithdownflow bubble column reactors, Catal. Today 97 (4) (2004) 325-330.
[28] R.P. Fishwick, R. Natividad, R. Kulkarni, P.A.McGuire, J.Wood, J.M. Winterbottom, E.H.Stitt, Selective hydrogenation reactions: a comparative study of monolith CDC, stirredtank and trickle bed reactors, Catal. Today 128 (1-2) (2007) 108-114.
[29] T.A. Nijhuis, F.M. Dautzenberg, J.A. Moulijna, Modeling of monolithic andtrickle-bed reactors for the hydrogenation of styrene, Chem. Eng. Sci. 58 (7)(2003) 1113-1124.
[30] T. Bauer, R. Guettel, S. Roy, M. Schubert, M. Al-Dahhan, R. Lange, Modelling andsimulation of the monolithic reactor for gas-liquid-solid reactions, Chem. Eng. Res.Des. 83 (7) (2005) 811-819.
[31] A.G. Bussard, Y.G. Waghmare, K.M. Dooley, F.C. Knopf, Hydrogenation ofα-methylstyrene in a piston-oscillating monolith reactor, Ind. Eng. Chem. Res. 47(14) (2008) 4623-4631.
[32] A. Cybulski, A. Stankiewicz, R.K.E. Albers, J.A. Moulijn, Monolithic reactors forfine chemicals industries: a comparative analysis of a monolithic reactor anda mechanically agitated slurry reactor, Chem. Eng. Sci. 54 (13-14) (1999)2351-2358.
[33] D.S. Liu, J.G. Zhang, D.F. Li, Q.D. Kong, T. Zhang, S.D. Wang, Hydrogenation of 2-ethylanthraquinone under Taylor flow in single square channel monolith reactors,AIChE J. 55 (3) (2009) 726-736.
[34] C. Eisenbeis, R. Guettel, U. Kunz, T. Turek,Monolith loop reactor for hydrogenation ofglucose, Catal. Today 147S (2009) S342-S346.
[35] S. Irandoust, O. Gahne, Competitive hydrodesulfurization and hydrogenation in amonolithic reactor, AICHE J. 36 (5) (1990) 746-752.
[36] R. Edvinsson, S. Irandoust, Hydrodesulfurization of dibenzothiophene in amonolithiccatalyst reactor, Ind. Eng. Chem. Res. 32 (2) (1993) 391-395.
[37] N. Wei, S.F. Ji, P.Y. Wu, Y.N. Guo, H. Liu, J.Q. Zhu, C.Y. Li, Preparation of nickelphosphide/SBA-15/cordierite monolithic catalysts and catalytic activity forhydrodesulfurization of dibenzothiophene, Catal. Today 147S (2009) S66-S70.
[38] P.S. Ma, Handbook of Basic Data for Petrochemical Engineering, 2nd ed. ChemicalIndustry Press, Beijing, 1993. (in Chinese).
[39] H. Korsten, U. Hoffmann, Three-phase reactor model for hydrotreating in pilottrickle-bed reactors, AIChE J. 42 (5) (1996) 1350-1360.
[40] H. Liu, C.O. Vandu, R. Krishna, Hydrodynamics of Taylor flow in vertical capillaries:flow regimes, bubble rise velocity, liquid slug length and pressure drop, Ind. Eng.Chem. Res. 44 (14) (2005) 4884-4897.
[41] G.F. Froment, K.B. Bischoff, Chemical Reactor Analysis and Design, 2nd ed. JohnWilley & Sons, New York, 1990.
[42] Y. Wang, Z.C. Sun, A.J. Wang, L.F. Ruan, M.H. Lu, J. Ren, X. Li, C. Li, Y.K. Hu, P.J. Yao,Kinetics of hydrodesulfurization of dibenzothiophene catalyzed by sulfided Co-Mo/MCM-41, Ind. Eng. Chem. Res. 43 (10) (2004) 2324-2329.
[43] X.Z. Yu, X.Q. Ren, Z.G. Dong, J. Wang, Y.R.Wang, Kinetics of the hydrodesulfurizationof dibenzoth iophene over a commercia NiW/Al2O3 catalyst, J. Fuel Chem. Technol. 33(4) (2005) 483-486 (in Chinese).
[44] G.H. Singhal, R.L. Espino, J.E. Sobel, G.A. Huff, Hydrodesulfurization of sulfur heterocycliccompounds: kinetics of dibenzothiophene, J. Catal. 67 (2) (1981) 457-468.
[45] M. Egorova, R. Prins, Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2O3, CoMo/γ-Al2O3, and Mo/γ-Al2O3 catalysts, J. Catal. 225 (2004) 417-427.
[46] P. Steiner, E.A. Blekkan, Catalytic hydrodesulfurization of a light gas oil over a NiMocatalyst: kinetics of selected sulfur components, Fuel Process. Technol. 79 (1) (2002)1-12.
[47] N.K. Nag, A.V. Sapre, D.H. Broderick, B.C. Gates, Hydrodesulfurization of polycyclicaromatics catalyzed by sulfide CoO-MoO/Al2O3: the relative reactivities, J. Catal. 57(3) (1979) 509-512.
[48] M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. de Beer, B.C. Gates, H. Kwart,Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed bysulfided Co-Mo/Al2O3, J. Catal. 61 (2) (1980) 523-527.
[49] M.T. Kreutzer, P. Du, J.J. Heiszwolf, F. Kapteijn, J.A.Moulijn, Mass transfer characteristicsof three-phase monolith reactors, Chem. Eng. Sci. 56 (21-22) (2001) 6015-6023.
[50] M.V. Rajashekharam, R. Jaganathan, R.V. Chaudhari, A trickle-bed reactor model forhydrogenation of 2,4 dinitrotoluene: experimental verification, Chem. Eng. Sci. 53(4) (1998) 787-805.
[51] M.J. Macías, J. Ancheyta, Simulation of an isothermal hydrodesulfurization small reactorwith different catalyst particle shapes, Catal. Today 98 (1-2) (2004) 243-252.
[52] M.J. Girgis, B.C. Gates, Reactivities, reaction networks, and kinetics in high-pressurecatalytic hydroprocessing, Ind. Eng. Chem. Res. 30 (9) (1991) 2021-2058.
[53] T. Kabe, A. Ishihara, Q. Zhang, Deep desulfurization of light oil. Part 2:hydrodesulfurization of dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene, Appl. Catal. A Gen. 97 (1) (1993) L1-L9.
[54] R. Shafi, G.J. Hutchings, Hydrodesulfurization of hindered dibenzothiophenes: anoverview, Catal. Today 59 (3-4) (2000) 423-442.
[55] I. Mochida, K. Sakanishi, X.L. Ma, S. Nagao, T. Isoda, Deep hydrodesulfurization ofdiesel fuel: design of reaction process and catalysts, Catal. Today 29 (1-4) (1996)185-189.
[56] X.L. Ma, K. Sakanishi, T. Isoda, I. Mochida, Hydrodesulfurization reactivities ofnarrow-cut fractions in a gas oil, Ind. Eng. Chem. Res. 34 (3) (1996) 748-754.
[57] C.O. Vandu, H. Liu, R. Krishna, Mass transfer from Taylor bubbles rising in singlecapillaries, Chem. Eng. Sci. 60 (2005) 6430-6437.
[58] J.M. van Baten, R. Krishna, CFD simulations of wall mass transfer for Taylor flow incircular capillaries, Chem. Eng. Sci. 60 (22) (2005) 1117-2126.
[59] M. Xu, H. Huang, X.P. Zhan, H. Liu, S.F. Ji, C.Y. Li, Pressure drop and liquid hold-up inmultiphase monolithic reactor with different distributors, Catal. Today 147S (2009)S132-S137.
[60] M.T. Kreutzer, M.G. van der Eijnden, F. Kapteijn, J.A. Moulijn, J.J. Heiszwolf, Thepressure drop experiment to determine slug lengths in multiphase monoliths,Catal. Today 105 (3-4) (2005) 667-672.
[61] S. Goto, J.M. Smith, Trickle-bed reactor performance. Part I. Holdup and masstransfer effects, AIChE J. 21 (4) (1975) 706-713.
[62] C.N. Satterfield, M. van Eek, G.S. Bliss, Liquid-solidmass transfer in packed bedswithdownward concurrent gas-liquid flow, AICHE J. 24 (4) (1978) 709-718.
[63] I. Iliuta, F. Larachi, B.P.A. Grandjean, Residence time, mass transfer and back-mixingof the liquid in trickle flow reactors containing porous particles, Chem. Eng. Sci. 54(18) (1999) 4099-4109.
[64] P.Z. Lu, J.M. Smith,M. Herskowitz, Gas-particle mass transfer in trickle beds, AIChE J.30 (3) (1984) 500-502.
[65] J.M. Hochmann, E. Effron, Two-phase cocurrent downflow in packed beds, Ind. Eng.Chem. Fundam. 8 (1) (1969) 63-71.
[66] P.L. Mills, M.P. Dudukovic, Evaluation of liquid-solid contacting in trickle-bedreactors by tracer methods, AIChE J. 27 (6) (1981) 893-904.
[67] Y. Sato, T. Hirose, F. Takahashi, M. Toda, Flow pattern and pulsation properties ofcocurrent gas-liquid downflow in packed beds, J. Chem. Eng. Jpn 6 (4) (1973)147-156. |