[1] B.F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis, Fluid selection for a lowtemperature solar organic Rankine cycle, Appl. Therm. Eng. 29 (11-12) (2009) 2468-2476. [2] H.D. Madhawa Hettiarachchi, M. Golubovic, W.M. Worek, Y. Ikegami, Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources, Energy 32 (9) (2007) 1698-1706. [3] E.H. Wang, H.G. Zhang, B.Y. Fan, M.G. Ouyang, Y. Zhao, Q.H. Mu, Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery, Energy 36 (2011) 3406-3418. [4] E. Sauret, A.S. Rowlands, Candidate radial-inflow turbines and high-density working fluids for geothermal power systems, Energy 36 (7) (2011) 4460-4467. [5] D. Mikielewicz, J. Mikielwicz, A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP, Appl. Therm. Eng. 30 (2010) 2357-2362. [6] A.A. Lakew, O. Bolland, Working fluids for low-temperature heat source, Appl. Therm. Eng. 30 (2010) 1262-1268. [7] N.A. Lai, M.Wendland, J. Fischer,Working fluids for high-temperature organic Rankine cycles, Energy 36 (2011) 199-211. [8] X.D. Wang, L. Zhao, Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation, Sol. Energy 83 (5) (2009) 605-613. [9] J.L. Wang, L. Zhao, X.D. Wang, A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle, Appl. Energy 87 (11) (2010) 3366-3373. [10] L. Yang, H. Yu, S.Wang, H.Wang, Q. Zhou, Carbon dioxide captured from flue gas by modified Ca-based sorbents in fixed-bed reactor at high temperature, Chin. J. Chem. Eng. 21 (2) (2013) 199-204. [11] D. Xu, P. Xiao, G. Li, J. Zhang, P. Webley, Y. Zhai, CO2 capture by vacuum swing adsorption using F200 and sorbead WS as protective pre-layers, Chin. J. Chem. Eng. 20 (5) (2012) 849-855. [12] Z. Zhao, H. Dong, X. Zhang, The research progress of CO2 capture with ionic liquids, Chin. J. Chem. Eng. 20 (1) (2012) 120-129. [13] T. Guo, H. Wang, S. Zhang, Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle (ORC) using lowtemperature geothermal source, Sci. China Ser. E Technol. Sci. 53 (6) (2010) 1869-1900. [14] H. Chen, D.Y. Goswami,M.M. Rahman, E.K. Stefanakos, Energetic and exergetic analysis of CO2-and R32-based transcritical Rankine cycles for low-grade heat conversion, Appl. Energy 88 (8) (2011) 2802-2808. [15] P. Garg, P. Kumar, K. Srinivasan, P. Dutta, Evaluation of carbon dioxide blends with isopentane and propane as working fluids for organic Rankine cycles, Appl. Therm. Eng. 52 (2) (2013) 439-448. [16] X. Zhang, H. Yamaguchi, D. Uneno, Experimental study on the performance of solar Rankine system using supercritical CO2, Renew. Energy 32 (15) (2007) 2617-2628. [17] H. Yamaguchi, X.R. Zhang, K. Fujima,M. Enomoto, N. Sawada, Solar energy powered Rankine cycle using supercritical CO2, Appl. Therm. Eng. 26 (17-18) (2006) 2345-2354. [18] Y.M. Kim, C.G. Kim, D. Favrat, Transcritical or supercritical CO2 cycles using both low-and high-temperature heat sources, Energy 43 (1) (2012) 402-415. [19] J.M. Calm, G.C. Hourahan, Refrigerant data summary update, HPAC Eng. 79 (2007) 50-64. [20] M. Chys, M. van den Broek, B. Vanslambrouck, M.D. Paepe, Potential of zeotropic mixture as working fluids in organic Rankine cycles, Energy 44 (1) (2012) 623-632. [21] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology, 2010. |