[1] S.B. Cheng, C.D. Skinner, J. Taylor, S. Attiya, W.E. Lee, G. Picelli, D.J. Harrison, Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay, Anal. Chem. 73(2001) 1472-1479.
[2] J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C.Waters, R.S. Foote, J.M. Ramsey, Integrated system for rapid PCR-based DNA analysis in microfluidic devices, Anal. Chem. 72(2000) 2995-3000.
[3] Y. Shi, P.C. Simpson, J.R. Scherer, D.Wexler, C. Skibola, M.T. Smith, R.A. Mathies, Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis, Anal. Chem. 71(1999) 5354-5361.
[4] J. Rossier, F. Reymond, P.E. Michel, Polymer microfluidic chips for electrochemical and biochemical analyses, Electrophoresis 23(2002) 858-867.
[5] B. Ahmed-Omer, J.C. Brandt, T.Wirth, Advanced organic synthesis usingmicroreactor technology, Org. Biomol. Chem. 5(2007) 733-740.
[6] A.P. Harvey, M.R. Mackley, T. Seliger, Process intensification of biodiesel production using a continuous oscillatory flow reactor, J. Chem. Technol. Biotechnol. 78(2003) 338-341.
[7] N.T. Nguyen, S.T. Wereley, Fundamentals and applications of microfluidics, Artech House, 2002.
[8] E. Oosterbroek, A.V.D. Berg, Lab-on-a-chip:Miniaturized systems for (bio)chemical analysis and synthesis, Elsevier, 2003.
[9] T. Vilkner, D. Janasek, A. Manz, Micro total analysis systems. Recent developments, Anal. Chem. 76(2004) 3373-3386.
[10] P. Stonestreet, A. Harvey, A mixing-based design methodology for continuous oscillatory flow reactors, Chem. Eng. Res. Des. 80(2002) 31-44.
[11] K.B. Smith, M.R. Mackley, An experimental investigation into the scale-up of oscillatory flow mixing in baffled tubes, Chem. Eng. Res. Des. 84(2006) 1001-1011.
[12] N.M. Kashid, L. Kiwi-Minsker, Microstructured reactors for multiphase reactions:State of the art, Ind. Eng. Chem. Res. 48(2009) 6465-6485.
[13] J. Yoshida, H. Kim, A. Nagaki, Green and sustainable chemical synthesis using flow microreactors, ChemSusChem 4(2011) 331-340.
[14] R.S. Abiev, A.S. Galushko, Hydrodynamics of pulsating flow type apparatus:Simulation and experiments, Chem. Eng. J. 229(2013) 285-295.
[15] A. Nagaki, Y. Tomida, J. Yoshida, Microflow-system-controlled anionic polymerization of styrenes, Macromolecules 41(2008) 6322-6330.
[16] D.Wilms, J. Klos, H. Frey, Microstructured reactors for polymer synthesis:A renaissance of continuous flow processes for tailor-made macromolecules? Macromol. Chem. Phys. 209(2008) 343-356.
[17] M. Kakuta, F.G. Bessoth, A. Manz, Microfabricated devices for fluid mixing and their application for chemical synthesis, Chem. Rec. 1(2008) 395-405.
[18] K.Wang, Y.C. Lu, H.W. Shao, G.S. Luo, Improving selectivity of temperature-sensitive exothermal reactions with microreactor, Ind. Eng. Chem. Res. 47(2008) 4683-4688.
[19] S.W. Li, J.H. Xu, Y.Y. Wang, G.S. Luo, Controllable preparation of nanoparticles by drops and plugs flow in a microchannel device, Langmuir 24(2008) 4194-4199.
[20] N. Solehati, J. Bae, A.P. Sasmito, Numerical investigation of mixing performance in microchannel T-junction with wavy structure, Comput. Fluids 96(2014) 10-19.
[21] F. Schönfeld, V. Hessel, C. Hofmann, An optimised split-and-recombinemicro-mixer with uniform ‘chaotic’ mixing, Lab Chip 4(2004) 65-69.
[22] J. Aubin, D.F. Fletcher, J. Bertrand, C. Xuereb, Characterization of the mixing quality in micromixers, Chem. Eng. Technol. 26(2003) 1262-1270.
[23] J. Aubin,M. Ferrando, V. Jiricny, Current methods for characterising mixing and flow in microchannels, Chem. Eng. Sci. 65(2010) 2065-2093.
[24] Z.D. Liu, Y.C. Lu, J.W.Wang, G.S. Luo,Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer:Experiment and CFD simulation, Chem. Eng. J. 181(2012) 597-606.
[25] P. Guichardon, L. Falk, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I:Experimental procedure, Chem. Eng. Sci. 55(2000) 4233-4243.
[26] P. Guichardon, L. Falk, J. Villermaux, Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part II:Kinetic study, Chem. Eng. Sci. 55(2000) 4245-4253.
[27] V. Hessel, H. Löwe, F. Schönfeld, Micromixers-A review on passive and active mixing principles, Chem. Eng. Sci. 60(2005) 2479-2501.
[28] W.L.H. Hallett, R. Günther, Flow and mixing in swirling flow in a sudden expansion, Can. J. Chem. Eng. 62(1984) 149-155.
[29] H.Y. Gan, Y.C. Lam, N.T. Nguyen, K.C. Tam, C. Yang, Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number, Microfluid. Nanofluid. 3(2007) 101-108.
[30] C.P. Jen, C.Y. Wu, Y.C. Lin, C.Y. Wu, Design and simulation of the micromixer with chaotic advection in twisted microchannels, Lab Chip 3(2003) 77-81.
[31] Y.M. Danilov, A.G.Mukhametzyanova, R.Y. Deberdeev, A.A. Berlin, Estimating the efficiency of mixing of liquid components in small tubular turbulent apparatuses, Theor. Found. Chem. Eng. 45(2011) 81-84.
[32] M.G. Lee, S. Choi, J.K. Park, Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel, Biomed.Microdevices 12(2010) 1019-1026.
[33] A. Sau, Generation of streamwise vortices in square sudden-expansion flows, Phys. Rev. E 69(2004) 056307.
[34] J.S. Park, H.I. Jung, Multiorifice flow fractionation:Continuous size-based separation of microspheres using a series of contraction/expansion microchannels, Anal. Chem. 81(2009) 8280-8288.
[35] D. Liang, S.F. Zhang, A contraction-expansion helical mixer in the laminar regime, Chin. J. Chem. Eng. 22(2014) 261-266.
[36] Z.M. Gao, J. Han, Y.Y. Bao, Z.P. Li, Micromixing efficiency in a T-shaped confined impinging jet reactor, Chin. J. Chem. Eng. 23(2015) 350-355.
[37] B.Q. Liu, Y.K. Zhang,M.Q. Chen, P. Li, Z.J. Jin, Power consumption and flow field characteristics of a coaxial mixer with a double inner impeller, Chin. J. Chem. Eng. 23(2015) 1-6.
[38] S.H.Wong,M.C.L.Ward, C.W.Wharton, Micro T-mixer as a rapid mixingmicromixer, Sensors Actuators B Chem. 100(2004) 359-379.
[39] D. Bothe, C. Sternich, H.J.Warnecke, Fluid mixing in a T-shaped micro-mixer, Chem. Eng. Sci. 61(2006) 2950-2958.
[40] T. Matsunaga, H.J. Lee, K. Nishino, An approach for accurate simulation of liquid mixing in a T-shaped micromixer, Lab Chip 13(2013) 1515-1521.
[41] C. Galletti,M. Roudgar, E. Brunazzi, R.Mauri, Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer, Chem. Eng. J. 185(2012) 300-313.
[42] A. Fani, S. Camarri, M.V. Salvetti, Investigation of the steady engulfment regime in a three-dimensional T-mixer, Phys. Fluids 25(2013) 064102.
[43] M.A. Sultan, K. Krupa, C.P. Fonte,M.I. Nunes,M.M. Dias, J.C.B. Lopes, R.J. Santos, Highthroughput T-jets mixers:An innovative scale-up concept, Chem. Eng. Technol. 36(2012) 323-331.
[44] P.V. Danckwerts, The definition and measurement of some characteristics of mixtures, Appl. Sci. Res. 3(1952) 279-296.
[45] I. Glasgow, N. Aubry, Enhancement of microfluidic mixing using time pulsing, Lab Chip 3(2003) 114-120.
[46] M. Roudgar, E. Brunazzi, C. Galletti, R. Mauri, Numerical study of split T-micromixers, Chem. Eng. Technol. 35(2012) 1291-1299. |