[1] S. Zulfiqar, F. Karadas, J. Park, E. Deniz, G.D. Stucky, Y. Jung, M. Atilhan, C.T. Yavuz, Amidoximes:Promising candidates for CO2 capture, Energy Environ. Sci. 4(2011) 4528-4531. [2] U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA)/Earth System Research Laboratory (ESRL), Global monitoring division, http://www.esrl.noaa.gov/gmd/ccgg/trends/, accessed October 2015 [3] K.M.K. Yu, I. Curcic, J. Gabriel, S.C.E. Tsang, Recent advances in CO2 capture and utilization, ChemSusChem. 1(2008) 893-899. [4] M.G. Plaza, C. Pevida, B. Arias, M.D. Casal, C.F. Martın, J. Fermoso, F. Rubiera, J.J. Pis, Different approaches for the development of low-cost CO2 adsorbents, J. Environ. Eng. 135(2009) 426-432. [5] D. Aaron, C. Tsouris, Separation of CO2 from flue gas:A review, Sep. Sci. Technol. 40(2005) 321-348. [6] F.M. Orr Jr., Carbon capture and storage:Are we ready, Energy Environ. Sci. 2(2009) 449-458. [7] R. Steeneveldt, B. Berger, T.A. Torp, CO2 capture and storage:Closing the knowing-doing gap, Chem. Eng. Res. Des. 84(2006) 739-763. [8] J. Blamey, J. Anthony, J. Wang, P.S. Fennel, An overview of CO2 capture technologies, Prog. Energy Combust. Sci. 36(2010) 260-279. [9] D.P. Harrison, The role of solids in CO2 capture:A mini review, Greenhouse Gas Control Technol. 7(2) (2005) 1101-1106. [10] G.P. Knowles, J.V. Graham, S.W. Delaney, A.L. Chaffee, Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents, Fuel Process. Technol. 86(2005) 1435-1448. [11] M.L. Gray, Y. Soong, K.J. Champagne, J. Baltrus, R.W. Stevens Jr., P. Toochinda, S.S.C. Chuang, CO2 capture by amine-enriched fly ash carbon sorbents, Sep. Purif. Technol. 35(2004) 31-36. [12] Y. He, X. Zhu, Y. Li, C. Peng, J. Hu, H. Liu, Efficient CO2 capture by triptycene-based microporous organic polymer with functionalized modification, Microporous Mesoporous Mater. 214(2015) 181-187. [13] T. Filburn, J.J. Helble, R.A. Weiss, Development of supported ethanolamines and modified ethanolamines for CO2 capture, Ind. Eng. Chem. Res. 44(2005) 1542-1546. [14] M. Radosz, X. Hu, K. Krutkramelis, Y. Shen, Flue-gas carbon capture on carbonaceous sorbents:Toward a low-cost multifunctional carbon filter for "green" energy producers, Ind. Eng. Chem. Res. 47(2008) 3783-3794. [15] M.M. Maroto-Valer, Z. Tang, Y. Zhang, CO2 capture by activated and impregnated anthracites, Fuel Process. Technol. 86(2005) 1487-1502. [16] M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, CO2 capture by adsorption with nitrogen enriched carbons, Fuel 86(2007) 2204-2212. [17] C. Lu, H. Bai, B. Wu, F. Su, J.F. Hwang, Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites, Energy Fuels 22(2008) 3050-3056. [18] C. Pevida, M.G. Plaza, B. Arias, J. Fermoso, F. Rubiera, J.J. Pis, Surface modification of activated carbons for CO2 capture, Appl. Surf. Sci. 254(2008) 7165-7172. [19] S. Zulfiqar, M.I. Sarwar, Probing the potential of polyester for CO2 capture, J. Environ. Sci. 26(2014) 1423-1427. [20] C. Pevida, T.C. Drage, C.E. Snape, Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture, Carbon 46(2008) 1464-1474. [21] T.C. Drage, J.M. Blackman, C. Pevida, C.E. Snape, Evaluation of activated carbon adsorbents for CO2 capture in gasification, Energy Fuel 23(2009) 2790-2796. [22] H. Hayashi, J. Taniuchi, N. Furuyashiki, S. Sugiyama, Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon, Ind. Eng. Chem. Res. 37(1998) 185-191. [23] N. Shigemoto, T. Yanagihara, S. Sugiyama, H. Hayashi, Material balance and energy consumption for CO2 recovery from moist flue gas employing K2CO3-on-activated carbon and its evaluation for practical adaptation, Energy Fuel 20(2006) 721-726. [24] S. Zulfiqar, M.I. Sarwar, D. Mecerreyes, Polymeric ionic liquids for CO2 capture and separation:Potential, progress and challenges, Polym. Chem. 6(2015) 6435-6451. [25] J. Merel, M. Clausse, F.Meunier, Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5 A zeolites, Ind. Eng. Chem. Res. 47(2008) 209-215. [26] D. Ko, R. Siriwardane, L.T. Biegler, Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration, Ind. Eng. Chem. Res. 42(2003) 339-348. [27] S. Cavenati, C.A. Grande, A.E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data 49(2004) 1095-1101. [28] A.P. Cote, A.I. Benin, N.W. Ockwig,M. O'Keeffe, A.J.Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks, Science 310(2005) 1166-1170. [29] H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, A.P. Cote, R.E. Taylor, M. O'Keeff, O.M. Yaghi, Designed synthesis of 3D covalent organic frameworks, Science 316(2007) 268-272. [30] F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Kloeck, M. O'Keeffe, O.M. Yaghi, A crystalline imine-linked 3-D porous covalent organic framework, J. Am. Chem. Soc. 131(2009) 4570-4571. [31] P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis, Angew. Chem. Int. Ed. 47(2008) 3450-3453. [32] P. Kuhn, A. Forget, D. Su, A. Thomas, M. Antonietti, From microporous regular frameworks to mesoporous materials with ultrahigh surface area:Dynamic reorganization of porous polymer networks, J. Am. Chem. Soc. 130(2008) 13333-13337. [33] R. Chinchilla, C. Najera, The Sonogashira reaction:A booming methodology in synthetic organic chemistry, Chem. Rev. 107(2007) 874-922. [34] J.-X. Jiang, F. Su, A. Trewin, C.D. Wood, N.L. Campbell, H. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly(aryleneethynylene) networks, Angew. Chem. Int. Ed. 46(2007) 8574-8578. [35] J.-X. Jiang, F. Su, A. Trewin, C.D.Wood, H. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Synthetic control of the pore dimension and surface area in conjugatedmicroporous polymer and copolymer networks, J. Am. Chem. Soc. 130(2008) 7710-7720. [36] J.-X. Jiang, A. Trewin, F. Su, C.D.Wood, H. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Microporous poly(tri(4-ethynylphenyl)amine) networks:Synthesis, properties, and atomistic simulation, Macromolecules 42(2009) 2658-2666. [37] T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing,W.Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew. Chem. Int. Ed. 48(2009) 9457-9460. [38] N.B. McKeown, P.M. Budd, Exploitation of intrinsic microporosity in polymer-based materials, Macromolecules 43(2010) 5163-5176. [39] Y. Luo, B. Li,W.Wang, K.Wu, B. Tan, Hypercrosslinked aromatic heterocyclic microporous polymers:A new class of highly selective CO2 capturing materials, Adv. Mater. 24(2012) 5703-5707. [40] J.Y. Lee, C.D. Wood, D. Bradshaw, M.J. Rosseinsky, A.I. Cooper, Hydrogen adsorption in microporous hypercrosslinked polymers, Chem. Commun. 2670-2672(2006). [41] M. Karahan, A. Kus, R. Eren, An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics, Int. J. Impact Eng. 35(2008) 499-510. [42] M. Karahan, Comparison of ballistic performance and energy absorption capabilities of woven and unidirectional aramid fabrics, Text. Res. J. 78(2008) 718-730. [43] Q. Chen, J.-X. Wang, F. Yang, D. Zhou, N. Bian, X.-J. Zhang, C.-G. Yan, B.-H. Han, Tetraphenylethylene-based fluorescent porous organic polymers:Preparation, gas sorption properties and photoluminescence properties, J. Mater. Chem. 21(2011) 13554-13560. [44] R.V. Siriwardane, M.S. Shen, E.P. Fisher, J.A. Poston, Adsorption of CO2 on molecular sieves and activated carbon, Energy Fuel 15(2001) 279-284. [45] D.M. Ruthven, Principles of adsorption and adsorption processes, Wiley, NY, 1984. [46] R. Dawson, D.J. Adams, A.I. Cooper, Chemical tuning of CO2 sorption in robust nanoporous organic polymers, Chem. Sci. 2(2011) 1173-1177. [47] Y.-C. Zhao, T.Wang, L.-M. Zhang, Y. Cui, B.-H. Han, Facile approach to preparing microporous organic polymers through benzoin condensation, ACS Appl. Mater. Interfaces 4(2012) 6975-6981. [48] S. Zulfiqar, S. Awan, F. Karadas, M. Atilhan, C.T. Yavuz, M.I. Sarwar, Amidoxime porous polymers for CO2 capture, RSC Adv. 3(2013) 17203-17213. [49] S. Zulfiqar, M.I. Sarwar, C.T. Yavuz, Melamine based porous organic amide polymers for CO2 capture, RSC Adv. 4(2014) 52263-52269. [50] S. Zulfiqar, M.I. Sarwar, Effect of solvent on the CO2 capture ability of polyester:A comparative study, J. Ind. Eng. Chem. 21(2015) 1373-1378. |