[1] S.J. Qin, Statistical process monitoring:Basics and beyond, J. Chemom. 17(2003) 480-502. [2] M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno, A new multivariate statistical process monitoring method using principal component analysis, Comput. Chem. Eng. 25(2001) 1103-1113. [3] X. Wang, U. Kruger, B. Lennox, Recursive partial least squares algorithms for monitoring complex industrial processes, Control. Eng. Pract. 11(2003) 613-632. [4] M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno, Monitoring independent components for fault detection, AICHE J. 49(2003) 969-976. [5] C.Y. Cheng, C.C. Hsu, M.C. Chen, Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes, Ind. Eng. Chem. Res. 49(2010) 2254-2262. [6] Y.X. Ma, B. Song, H.B. Shi, Y.W. Yang, Neighborhood based global coordination for multimode process monitoring, Chemom. Intell. Lab. Syst. 139(2014) 84-96. [7] X.Q. Liu, K. Li, M. McAfee, G.W. Irwin, Improved nonlinear PCA for process monitoring using support vector data description, J. Process Control 21(2011) 1306-1317. [8] B. Song, Y.X. Ma, H.B. Shi, Multimode process monitoring using improved dynamic neighborhood preserving embedding, Chemom. Intell. Lab. Syst. 135(2014) 17-30. [9] Z.Q. Ge, Z.H. Song, Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors, Ind. Eng. Chem. Res. 46(2007) 2054-2063. [10] J.H. Chen, J.L. Liu,Mixture principal component analysis models for process monitoring, Ind. Eng. Chem. Res. 38(1999) 1478-1488. [11] S.J. Zhao, J. Zhang, Y.M. Xu, Monitoring of processes with multiple operating modes through multiple principle component analysis models, Ind. Eng. Chem. Res. 43(2004) 7025-7035. [12] S.J. Zhao, J. Zhang, Y.M. Xu, Performance monitoring of processes with multiple operating modes through multiple PLS models, J. Process Control 16(2006) 763-772. [13] J.L. Liu, Process monitoring using Bayesian classification on PCA subspace, Ind. Eng. Chem. Res. 43(2004) 7815-7825. [14] C.K. Yoo, K. Villez, I.B. Lee, C. Rosen, P.A. Vanrolleghem, Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor, Biotechnol. Bioeng. 96(2007) 687-701. [15] Y.S. Ng, R. Srinivasan, An adjoined multi-model approach for monitoring batch and transient operations, Comput. Chem. Eng. 33(2009) 887-902. [16] L.B. Khediri, C. Weihs, M. Limam, Kernel k-means clustering based local support vector domain description fault detection of multimodal processes, Expert Syst. Appl. 39(2012) 2166-2171. [17] Z.B. Zhu, Z.H. Song, A. Palazoglu, Process pattern construction andmulti-mode monitoring, J. Process Control 22(2012) 247-262. [18] J. Yu, S.J. Qin, Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models, AICHE J. 54(2008) 1811-1829. [19] Z.Q. Ge, Z.H. Song, Mixture Bayesian regularization method of PPCA for multimode process monitoring, AICHE J. 56(2010) 2838-2849. [20] J.B. Yu, HiddenMarkov models combining local and global information for nonlinear and multimodal process monitoring, J. Process Control 20(2010) 344-359. [21] M.M. Rashid, J. Yu, Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection, Ind. Eng. Chem. Res. 51(2012) 5506-5514. [22] C. Ning, M.Y. Chen, D.H. Zhou, Hidden Markov model-based statistics pattern analysis for multimode process monitoring:an index-switching scheme, Ind. Eng. Chem. Res. 53(2014) 11084-11095. [23] J. Yoo, S. Choi, Orthogonal nonnegative matrix tri-factorization for co-clustering:Multiplicative updates on Stiefel manifolds, Inf. Process. Manag. 46(2010) 559-570. [24] F. Pompili, N. Gillis, P.A. Absil, F. Glineur, Two algorithms for orthogonal nonnegative matrix factorization with application to clustering, Neurocomputing 141(2014) 15-25. [25] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77(1989) 257-286. [26] J.J. Down, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17(1993) 245-255. [27] N.L. Richer, Decentralized control of the Tennessee Eastman challenge process, J. Process Control 6(1996) 205-221. |