[1] L. Fortuna, S. Graziani, A. Rizzo, M.G. Xibilia, Soft sensors for monitoring and control of industrial processes, Springer, London, 2007. [2] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33(4) (2009) 795-814. [3] K. Hiromasa, A. Masamoto, F. Kimito, Applicability domains and accuracy of prediction of soft sensor models, AIChE J. 57(6) (2011) 1506-1513. [4] X. Zuo, F. Tu, H.Y. Qing, X.L. Luo, Advanced control of acetylene hydrogenation reactor (Ⅱ). Soft sensor and its engineering practice, Control Instrum. Chem. Ind. (China) 30(2) (2003) 19-21. [5] R. Feng, Y.J. Zhang, Y.Z. Zhang, H.H. Shao, Drifting modeling method using weighted support vector machines with application to soft sensor, Acta Automat. Sin. 30(2004) 436-441. [6] J.J. Macias, P. Angelov, X.W. Zhou, A method for predicting quality of the crude oil distillation, Proceedings of the Int. Symp. Evolving Fuzzy Syst, Lake, United Kingdom 2006, pp. 214-220. [7] X. Wang, U. Kruger, G.W. Irwin, Process monitoring approach using fast moving window PCA, Ind. Eng. Chem. Res. 44(2005) 5691-5702. [8] P. Kadlec, B. Gabrys, Adaptive local learning soft sensor for inferential control support, Proceedings of the Int. Confer. Comput. Intel. Modelling Contr. Auto. Vienna, Austria 2008, pp. 243-248. [9] H.P. Jin, X.G. Chen, J.W. Yang, L. Wu, Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes, Comput. Chem. Eng. 71(2014) 77-93. [10] S. Khatibisepehr, H. Biao, F.W. Xu, A. Espejo, A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry, J. Process Control 22(2012) 1913-1929. [11] G. Cybenko, Just-in-time learning and estimation, in:S. Bittanti, G. Picci (Eds.), Identification, adaptation, learning:The science of learning models from data, Springer, Berlin 1996, pp. 423-434. [12] C. Cheng, M.S. Chiu, A new data-based methodology for nonlinear process modeling, Chem. Eng. Sci. 59(13) (2004) 2801-2810. [13] K. Fujiwara, M. Kano, S. Hasebe, A. Takinami, Soft-sensor development using correlation-based just-in-time modeling, AIChE J. 55(7) (2009) 1754-1765. [14] S. Kim, M. Kano, S. Hasebe, A. Takinami, T. Seki, Long-term industrial applications of inferential control based on just-in-time soft-sensors:Economical impact and challenges, Ind. Eng. Chem. Res. 52(35) (2013) 12346-12356. [15] Z. Ge, Z. Song, A comparative study of just-in-time-learning based methods for online soft sensor modeling, Chemom. Intell. Lab. 104(2010) 306-317. [16] R.E. Schapire, Explaining adaboost, Empirical inference, Springer, Berlin Heidelberg 2013, pp. 37-52. [17] R. Rojas, AdaBoost and the super bowl of classifiers a tutorial introduction to adaptive boosting, Freie University, Berlin, Tech. Rep, 2009. [18] Y. Freund, R. Schapire, N. Abe, A short introduction to boosting, J. Jpn. Soc. Artif. Intell. 14(1999) 771-780. [19] Y. Liu, N. Hu, H. Wang, et al., Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size, Ind. Eng. Chem. Res. 48(12) (2009) 5731-5741. [20] S.J. Qin, Recursive PLS algorithms for adaptive data modeling, Comput. Chem. Eng. 22(4) (1998) 503-514. [21] X.L. Luo, Process of fluid flow, Chemical process dynamics, Chemical Industry Press, Beijing 2005, pp. 25-27. [22] P. Cao, X. Luo, Modeling for soft sensor systems and parameters updating online, J. Process Control 24(6) (2014) 975-990. [23] P.F. Cao, X.L. Luo, Soft sensor model derived from Wiener model structure:Modeling and identification, Chin. J. Chem. Eng. 22(5) (2014) 538-548. |