[1] C.C. Chen, H.I. Britt, J.F. Boston, et al., Local composition model for excess Gibbs energy of electrolyte systems. Part I:Single solvent, single completely dissociated electrolyte systems, AICHE J. 28(4) (1982) 588-596. [2] C.C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AICHE J. 32(3) (1986) 444-454. [3] C.C. Chen, P.M. Mathias, H. Orbey, Use of hydration and dissociation chemistries with the electrolyte-NRTL model, AICHE J. 45(7) (1999) 1576-1586. [4] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77(2) (1973) 268-277. [5] P. Wang, A. Anderko, R.D. Young, A speciation-based model for mixed-solvent electrolyte systems, Fluid Phase Equilib. 203(1) (2002) 141-176. [6] P. Wang, A. Anderko, Springer R.D., et al., Modeling phase equilibria and speciation in mixed-solvent electrolyte systems:Ⅱ. Liquid-liquid equilibria and properties of associating electrolyte solutions, J. Mol. Liq. 125(1) (2006) 37-44. [7] X. Lu, G. Maurer, Model for describing activity coefficients in mixed electrolyte aqueous solutions, AICHE J. 39(9) (1993) 1527-1538. [8] X. Lu, L. Zhang, Y. Wang, et al., Prediction of activity coefficients of electrolytes in aqueous solutions at high temperatures, Ind. Eng. Chem. Res. 35(5) (1996) 1777-1784. [9] P. Debye, E. Hückel, De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes, Phys. Z. 24(9) (1923) 185-206. [10] K. Thomsen, P. Rasmussen, R. Gani, Simulation and optimization of fractional crystallization processes, Chem. Eng. Sci. 53(8) (1998) 1551-1564. [11] K. Thomsen, P. Rasmussen, Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems, Chem. Eng. Sci. 54(12) (1999) 1787-1802. [12] X. Xu, Y. Hu, L. Wu, et al., Experimental and modeling of vapor-liquid equilibria for electrolyte solution systems, J. Chem. Eng. Data 59(11) (2014) 3741-3748. [13] S. Howard, L. Silcock, Solubilities of inorganic and organic compounds, 3(2), Pergamon Press, 1979359-370. [14] W.J. Lightfoot, C.F. Prutton, Equilibria in saturated salt solutions. Ⅱ. The ternary systems CaCl2-MgCl2-H2O, CaCl2-KCl-H2O and MgCl2-KCl-H2O at 75℃, J. Am. Chem. Soc. 69(9) (1947) 2098-2100. [15] V.I. Vereshchagina, Zolotareva L.V., L.F. Shulyak, Zh. Neorg. Khim. 14(1969) 3390. [16] W.J. Lightfoot, Prutton C.F, Equilibria in saturated solutions. I. The ternary systems CaCl2-MgCl2-H2O, CaCl2-KCl-H2O, and MgCl2-KCl-H2O at 35℃, J. Am. Chem. Soc. 68(6) (1946) 1001-1002. [17] A. Apelblat, E. Korin, Temperature dependence of vapor pressures over saturated aqueous solutions at invariant points of the NaCl+KCl+H2O, NaCl+NaNO3+H2O, KCl+KBr+H2O, KCl+KI+H2O, KCl+KNO3+H2O, and KCl+K2SO4+H2O systems†, J. Chem. Eng. Data 54(5) (2009) 1619-1624. [18] J.W. Leather, J.N. Mukerji, J.N. Mukerji, The system potassium nitrate, sodium chloride, water, Thacker Spink, 1914. [19] Assarsson G.O., Equilibria in aqueous systems containing K+, Na+, Ca+2, Mg+2 and Cl-. I. The ternary system CaCl2-KCl-H2O1, J. Am. Chem. Soc. 72(4) (1950) 1433-1436. [20] N.V. Bodaleva, I.N. Lepeshkov, Solubility study in the system K2SO4-MgSO4-CaSO4-H2O at 55℃, Zh. Neorg. Khim. 1(1956) 995-1007. [21] L.V. Novikova, A study of solubility for the system CaSO4·MgSO4·H2O at 35° by the method of tracer atoms, Zh. Neorg. Khim. 2(1957) 662-668. [22] H. Li, D. Zeng, Y. Yao, et al., Solubility phase diagram of the quaternary system Li+, Mg2+//Cl-, SO42-H2O at 298.15 K:Literature redetermination and model simulation, Ind. Eng. Chem. Res. 53(18) (2014) 7579-7590. [23] M.A. Clynne, R.W.I. Potter, J.L.J. Haas, Solubility of NaCl in Aqueous Electrolyte Solutions from 10 to 100 degrees C, J. Chem. Eng. Data 26(1981) 396-398. [24] J.E. Teeple, The industrial development of searles lake brines with equilibrium data, 1929. [25] E.C. Tavares, S.I.S. Marcelino, O. Chiavone-Filho, C.P. Souza, Determination of salt solubility data for ternary aqueous systems with a quasiisothermic thermometric technique, Thermochim. Acta 328(1999) 253-258. [26] J. Nývlt, J. Eysseltová, Physical interpretation of solubility interaction constants from the series expansion of the relative activity coefficients, Collect. Czechoslov. Chem. Commun. 59(9) (1994) 1911-1921. |