[1] Y. Yu, L. Duan, Q. Zhang, et al., Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework, ACS Chem. Biol. 4(10) (2009) 855-864.[2] M.N. Kashani, S. Shahhosseini, A methodology for modeling batch reactors using generalized dynamic neural networks, Chem. Eng. J. 159(1-3) (2010) 195-202.[3] L. Chen, O. Bernard, G. Bastin, P. Angelov, Hybrid modelling of biotechnological processes using neural networks, Control. Eng. Pract. 8(7) (2000) 821-827.[4] M. Ławryńczuk, Online set-point optimization cooperating with predictive control of a yeast fermentation process:A neural network approach, Eng. Appl. Artif. Intell. 24(6) (2011) 968-982.[5] J.L.Wang, X.Y. Feng, T. Yu, A geometric approach to support vector regression and its application to fermentation process fast modeling, Chin. J. Chem. Eng. 20(4) (2012) 715-722.[6] L.H.P. Harada, A.C.D. Costa, R.M. Filho, Hybrid neuralmodeling of bioprocesses using functional link networks, Appl. Biochem. Biotechnol. 98(1) (2002) 1009-1023.[7] J.A.Wilson, L.E.M. Zorzetto, A generalised approach to process state estimation using hybrid artificial neural network/mechanistic models, Comput. Chem. Eng. 21(9) (1997) 951-963.[8] S.Ö. Laursen, D. Webb, W.F. Ramirez, Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein, Comput. Chem. Eng. 31(3) (2007) 163-170.[9] X.F.Wang, J.D. Chen, C.B. Liu, F. Pan, Hybridmodeling of penicillin fermentation process based on least square support vector machine, Chem. Eng. Res. Des. 88(4) (2010) 415-420.[10] D.C. Psichogios, L.H. Ungar, A hybrid neural network-first principles approach to process modeling, AIChE J. 38(10) (1992) 1499-1511.[11] D. Beluhan, S. Beluhan, Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor, Biotechnol. Lett. 22(8) (2000) 631-635.[12] S. James, L. Legge, H. Budman, Comparative study of black-box and hybrid estimation methods in fed-batch fermentation, J. Process Control 12(1) (2002) 113-121.[13] A. Saraceno, S. Curcio, V. Calabrò, G. Iorio, Hybrid neural approach to model batch fermentation of "ricotta cheese whey" to ethanol, Comput. Chem. Eng. 34(10) (2010) 1590-1596.[14] O. Kahrs, W. Marquardt, Incremental identification of hybrid process models, Comput. Chem. Eng. 32(4-5) (2008) 694-705.[15] C.H. Yang, S.W. Tsai, L.Y. Chuang, C.H. Yang, An improved particle swarm optimization with double-bottom chaotic maps for numerical optimization, Appl. Math. Comput. 219(1) (2012) 260-279.[16] M.S. Li, X.Y. Huang, H.S. Liu, et al., Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory, Fluid Phase Equilib. 356(2013) 11-17.[17] A. Alfi, H.Modares, Systemidentification and control using adaptive particle swarm optimization, Appl. Math. Model. 35(3) (2011) 1210-1221.[18] D.L. Jia, G.X. Zheng, B.Y. Qu, M.K. Khan, A hybrid particle swarm optimization algorithm for high-dimensional problems, Comput. Ind. Eng. 61(4) (2011) 1117-1122.[19] G. Birol, C. Ündey, A. Çinar, A modular simulation package for fed-batch fermentation:Penicillin production, Comput. Chem. Eng. 26(11) (2002) 1553-1565.[20] S. Ruchi, C. Subhash, K.S. Ashok, Batch kinetics and modeling of gibberellic acid production by Gibberella fujikuroi, Enzym. Microb. Technol. 36(4) (2005) 492-497.[21] J. Kennedy, R.C. Eberhart, Particle swarm optimization, Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 1995.[22] Y.B. Meng, J.H. Zou, X.S. Gan, L. Zhao, Research onWNN aerodynamicmodeling from flight data based on improved PSO algorithm, Neurocomputing 83(2012) 212-221.[23] K. Hornik,M. Stinchcombe, H.White,Multilayer feedforward networks are universal approximators, Neural Netw. 2(5) (1989) 359-366.[24] K.T. Fang, C.X. Ma, Orthogonal and Uniform Experimental Design, first ed. Science Press, Beijing, 2001(in Chinese).[25] A.A. Koutinas, R. Wang, I.K. Kookos, C. Webb, Kinetic parameters of Aspergillus awamori in submerged cultivations on whole wheat flour under oxygen limiting conditions, Biochem. Eng. J. 16(1) (2003) 23-34.[26] S.K. Noor, M.M. Indra, R.P. Singh, Modeling the growth of Corynebacterium glutamicum under product inhibition in L-glutamic acid fermentation, Biochem. Eng. J. 25(2) (2005) 173-178.[27] V.V. Vesselinov, D.R. Harp, Adaptive hybrid optimization strategy for calibration and parameter estimation of physical process models, Comput. Geosci. 49(2012) 10-20.[28] J. Sun, W. Fang, V. Palade, X.J. Wu, W.B. Xu, Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point, Appl. Math. Comput. 218(7) (2011) 3763-3775. |