[1] O.C. David, D. Gorri, A. Urtiaga, I. Ortiz, Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a matrimid membrane, J. Membr. Sci. 378(2011) 359-368. [2] K.H. Kim, P.G. Ingole, J.H. Kim, H.K. Lee, Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas, Chem. Eng. J. 233(2013) 242-250. [3] S. Roussanaly, R. Anantharaman, K. Lindqvist, H. Zhai, E. Rubin, Membrane properties required for post-combustion CO2 capture at coal-fired power plants, J. Membr. Sci. 511(2016) 250-264. [4] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400. [5] S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties, J.Membr. Sci. 460(2014) 62-70. [6] I. Taniguchi, T. Kai, S. Duan, S. Kazama, H. Jinnai, A compatible crosslinker for enhancement of CO2 capture of poly (amidoamine) dendrimer-containing polymeric membranes, J. Membr. Sci. 475(2015) 175-183. [7] V. Nafisi,M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci. 459(2014) 244-255. [8] H. Lin, Z. He, Z. Sun, J. Vu, A. Ng, M. Mohammed, J. Kniep, T.C. Merkel, T. Wu, R.C. Lambrecht, CO2-selective membranes for hydrogen production and CO2 capture-part I:membrane development, J. Membr. Sci. 457(2014) 149-161. [9] K.H. Kim, W.K. Choi, H.D. Jo, J.H. Kim, H.K. Lee, Hollow fiber membrane process for the pretreatment of methane hydrate from landfill gas, Fuel Process. Technol. 121(2014) 96-103. [10] N.V. Blinova, F. Svec, Functionalized high performance polymermembranes for separation of carbon dioxide and methane, J. Mater. Chem. A 2(2014) 600-604. [11] F. Wang, S. Fu, G. Guo, Z.Z. Jia, S.J. Luo, R.B. Guo, Experimental study on hydratebased CO2 removal from CH4/CO2 mixture, Energy 104(2016) 76-84. [12] U. Cakal, L. Yilmaz, H. Kalipcilar, Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes, J. Membr. Sci. 417-418(2012) 45-51. [13] P. Sukitpaneenit, T.-S. Chung, Fabrication and use of hollowfiber thin film composite membranes for ethanol dehydration, J. Membr. Sci. 450(2014) 124-137. [14] P.G. Ingole,W. Choi, K.H. Kim, H.D. Jo,W.K. Choi, J.S. Park, H.K. Lee, Preparation, characterization and performance evaluations of thin film composite hollow fiber membrane for energy generation, Desalination 345(2014) 136-145. [15] P.G. Ingole, M.I. Baig,W.K. Choi, H.K. Lee, Synthesis and characterization of polyamide/polyester thin-film nanocomposite membranes achieved by functionalized TiO2 nanoparticles for water vapor separation, J. Mater. Chem. A 4(2016) 5592-5604. [16] K.H. Kim, P.G. Ingole, J.H. Kim, H.K. Lee, Experimental investigation and simulation of hollow fiber membrane process for SF6 recovery from GIS, Polym. Adv. Technol. 24(2013) 997-1004. [17] Y. Zhang, N.L. Le, T.S. Chung, Y. Wang, Thin-film composite membranes with modified polyvinylidene fluoride substrate for ethanol dehydration via pervaporation, Chem. Eng. Sci. 118(2014) 173-183. [18] V. Freger, Kinetics of film formation by interfacial polycondensation, Langmuir 21(2005) 1884-1894. [19] P.G. Ingole, W.K. Choi, G.B. Lee, H.K. Lee, Thin-film-composite hollow-fiber membranes for water vapor separation, Desalination (2016), http://dx.doi.org/10.1016/j.desal.2016.06.003. [20] P.G. Ingole, H.C. Bajaj, K. Singh, Preparation and performance evaluation of enantioselective polymer composite materials, RSC Adv. 3(2013) 3667-3676. [21] P.G. Ingole, N.P. Ingole, Methods for separation of organic and pharmaceutical compounds by different polymer materials, Korean J. Chem. Eng. 31(2014) 2109-2123. [22] P.G. Ingole, H.C. Bajaj, K. Singh, Optical resolution of racemic lysine monohydrochloride by novel enantioselective thin film composite membrane, Desalination 305(2012) 54-63. [23] P.G. Ingole, H.C. Bajaj, K. Singh, Membrane separation processes:Optical resolution of lysine and asparagine amino acids, Desalination 343(2014) 75-81. [24] C.W. Tsai, C. Tasi, R.C. Ruaan, C.C. Hu, K.R. Lee, Interfacially polymerized layers for oxygen enrichment:A method to overcome Robeson's upper-bound limit, ACS Appl. Mater. Interfaces 5(2013) 5563-5568. [25] M.R. Kosuri, W.J. Koros, Defect-free asymmetric hollow fiber membranes from Torlon, a polyamide-imide polymer, for high pressure CO2 separations, J. Membr. Sci. 320(2008) 65-72. [26] T. Mohammadi, M.T. Moghadam,M. Saeidi,M. Mahdyarfar, Acid gas permeation behavior through poly(ester urethane urea) membrane, Ind. Eng. Chem. Res. 47(2008) 7361-7367. [27] M. Wang, Z.Wang, S. Li, C. Zhang, J.Wang, S.Wang, A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas, Energy Environ. Sci. 6(2013) 539-551. [28] S.H. Yun, P.G. Ingole, K.H. Kim, W.K. Choi, J.H. Kim, H.K. Lee, Properties and performances of polymer composite membranes correlated with monomer and polydopamine for flue gas dehydration by water vapour permeation, Chem. Eng. J. 258(2014) 348-356. [29] P.G. Ingole,W. Choi,K.H.Kim, C.H. Park,W.K. Choi,H.K. Lee, Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation, Chem. Eng. J. 243(2014) 137-146. [30] R.J. Sadus, Calculating critical transitions of fluid mixtures:theory vs. experiment, AIChE J. 40(1994) 1376-1403. [31] Y. Yampolskii, I. Pinnau, B. Freeman, Material science of membranes for gas and vapor separation, John Wiley & sons Ltd., England, 2006. [32] M. Peer, S.M. Kamali, M. Nahdeyarfar, T. Mohammadi, Separation of hydrogen from carbonmonoxide using a hollowfiber polyimide membrane:experimental and simulation, Chem. Eng. Technol. 30(2007) 1418-1425. [33] P. Coutsikos, K. Magoulas, G.M. Kontogeorgis, Prediction of solid-gas equilibria with the Peng-Robinson equation of state, J. Supercrit. Fluids 25(2003) 197-212. [34] X.W. Yu, Z. Wang, Z.H. Wei, S.J. Yuan, J. Zhao, J.X. Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, J. Membr. Sci. 362(2010) 265-278. [35] M.I. Baig, P.G. Ingole, W.K. Choi, S.R. Park, E.C. Kang, H.K. Lee, Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration, J. Membr. Sci. 514(2016) 622-635. [36] S. Li, Z. Wang, C. Zhang, M. Wang, F. Yuan, J. Wang, S. Wang, Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation, J. Membr. Sci. 436(2013) 121-131. [37] Y. Liu, B. He, J. Li, R.D. Sandersonc, L. Li, S. Zhang, Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization, J. Membr. Sci. 373(2011) 98-106. [38] P.G. Ingole, K.H. Kim, C.H. Park, W.K. Choi, H.K. Lee, Preparation, modification and characterization of polymeric hollow fiber membranes for pressure-retarded osmosis, RSC Adv. 4(2014) 51430-51439. [39] P.G. Ingole, K. Singh, H.C. Bajaj, Enantioselective polymeric compositemembrane for optical resolution of racemic mixtures of α-amino acids, Sep. Sci. Technol. 46(2011) 1898-1907. [40] W. Choi, P.G. Ingole, J.S. Park, D.W. Lee, J.H. Kim, H.K. Lee, H2/CO mixture gas separation using composite hollow fibermembranes prepared by interfacial polymerization method, Chem. Eng. Res. Des. 102(2015) 297-306. [41] M.I. Baig, P.G. Ingole, W.K. Choi, S.R. Park, E.C. Kang, H.K. Lee, Water vapor permeation behavior of interfacially polymerized polyamide thin film on hollow fiber membrane substrate, J. Taiwan Inst. Chem. Eng. 60(2016) 623-635. [42] K. Singh, P.G. Ingole, H. Bhrambhatt, A. Bhattachayra, H.C. Bajaj, Preparation, characterization and performance evaluation of chiral selective composite membranes, Sep. Purif. Technol. 78(2011) 138-146. [43] A.L. Ahmad, B.S. Ooi, Properties-performance of thin film composites membrane:study on trimesoyl chloride content and polymerization time, J. Membr. Sci. 255(2005) 67-77. [44] K.T. Woo, G. Dong, J. Lee, J.S. Kim, Y.S. Do, W.H. Lee, H.S. Lee, Y.M. Lee, Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes, J. Membr. Sci. 510(2016) 472-480. [45] E.P. Favvas, G.C. Kapantaidakis, J.W. Nolan, A.C. Mitropoulos, N.K. Kanellopoulos, Preparation characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid 5218 precursor, J. Mater. Process. Technol. 186(2007) 102-110. [46] E.P. Favvas, E.P. Kouvelos, G.E. Romanos, G.I. Pilatos, A.C. Mitropoulos, N.K. Kanellopoulos, Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor, J. Porous Mater. 15(2008) 625-633. [47] A. Sharif, H. Koolivand, G. Khanbabaie, M. Hemmati, J. Aalaie, M.R. Kashani, A. Gheshlaghi, Improvement of CO2/CH4 separation characteristics of polyethersulfone by modifying with polydimethylsiloxane and nano-silica, J. Polym. Res. 19(2012) 9916. [48] W.N.W. Salleh, A.F. Ismail, Carbon hollowfibermembranes derived fromPEI/PVP for gas separation, Sep. Purif. Technol. 80(2011) 541-548. [49] M.Z. Pedram, M. Omidkhah, A.E. Amooghin, Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation, J. Ind. Eng. Chem. 20(2014) 74-82. [50] C. Cao, R. Wang, T.S. Chung, Y. Liu, Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation, J. Membr. Sci. 209(2002) 309-319. |