[1] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates-A potential energy source for the 21st century, J. Pet. Sci. Eng. 56(1-3) (2007) 14-31. [2] G. George, N. Bhoria, S. AlHallaq, A. Abdala, V. Mittal, Polymer membranes for acid gas removal from natural gas, Sep. Purif. Technol. 158(2016) 333-356. [3] B. Landreau, J.C. Amande, Method for Dehydrating A Wet Gas Using A Liquid Dessicant, with Advanced Regeneration of Said Dessicant, USA Pat., 6461413, 2002. [4] P. Gandhidasan, A.A. Al-Farayedhi, A.A. Al-Mubarak, Dehydration of natural gas using solid desiccants, Energy. 26(2001) 855-868. [5] A.S. Holmes, J.M. Ryan, Cryogenic Distillative Separation of Acid Gases from Methane, USA Pat. 4318723,, U.S. Patent, 1982. [6] A. Holmen, Direct conversion of methane to fuels and chemicals, Catal. Today 142(1-2) (2009) 2-8. [7] T. Fan, W. Xie, X. Ji, Ch. Liu, X. Lu, CO2/N2 separation using supported ionic liquid membranes with green and cost-effective[choline] [pro]/PEG200 mixtures, Chinese J. chem. Eng. 24(11) (2016) 1513-1521. [8] P.C. Sahoo, M. Kumar, S.K. Puri, S.S.V. Ramakumar, Enzyme inspired complexes for industrial CO2 capture:Opportunities and challenges, J. CO2 Util. 24(2018) 419-429. [9] J. Xu, H. wu, Z. Wang, Z. Qiao, S. Zhao, J. Wang, Recent advances on the membrane processes for CO2 separation, Chinese J. chem. Eng. 26(11) (2018) 2280-2291. [10] Y. Han, W.W. Ho, Recent advances in polymeric membranes for CO2 capture, Chinese J. chem. Eng. 26(11) (2018) 2238-2254. [11] F. Dorosti, A. Alizadehdakhel, Fabrication and investigation of PEBAX/Fe-BTC, a high permeable and CO2 selective mixed matrix membrane, Chem. Eng. Res. Des. 136(2018) 119-128. [12] M. Wang, Z. Wang, S. Zhao, J. Wang, S. Wang, Recent advances on mixed matrix membranes for CO2 separation, Chin. J. Chem. Eng. 25(11) (2017) 1581-1597. [13] J. Sun, Q. Li, G. Chen, J. Duan, G. Liu, W. Jin, MOF-801 incorporated PEBA mixedmatrix composite membranes for CO2 capture, Sep. Purif. Technol. 217(2019) 229-239. [14] H.A. Ozen, B. Ozturk, Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals, Sep. Purif. Technol. 211(2019) 514-521. [15] L. Li, X. Huang, Q. Jiang, L. Xia, J. Wang, N. Ai, New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid[Emim] [Tf2N], Chin.J. chem.eng. 28(2020) 721-732. [16] Z. Dai, R.D. Noble, D.L. Gin, X. Zhang, L. Deng, Combination of ionic liquids with membrane technology:A new approach for CO2 separation, J. Memb. Sci. 497(2016) 1-20. [17] H.A. Mannan, D.F. Mohshim, H. Mukhtar, T. Murugesan, Z. Man, M.A. Bustam, Synthesis, characterization, and CO2 separation performance of polyether sulfone/[EMIM] [Tf2N] ionic liquid-polymeric membranes (ILPMs), J. Ind. Eng. Chem. 54(2017) 98-106. [18] D.F. Mohshim, H. Mukhtar, Z. Man, A study on carbon dioxide removal by blending the ionic liquid in membrane synthesis, Sep. Purif. Technol. 196(2018) 20-26. [19] G. Zarca, W.J. Horne, I. Ortiz, A. Urtiaga, J.E. Bara, Synthesis and gas separation properties of poly (ionic liquid)-ionic liquid composite membranes containing a copper salt, J. Memb. Sci. 515(2016) 109-114. [20] K. Halder, M.M. Khan, J. Grünauer, S. Shishatskiy, C. Abetz, V. Filiz, V. Abetz, Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics, J. Memb. Sci. 539(2017) 368-382. [21] J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixedmatrix membranes for gas separation, J. Memb. Sci. 314(1-2) (2008) 123-133. [22] S.C. Lu, A.L. Khan, I.F.J. Vankelecom, Polysulfone-ionic liquid based membranes for CO2/N2 separation with tunable porous surface features, J. Memb. Sci. 518(2016) 10-20. [23] T. Rajkumar, G.R. Rao, Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid, Mater. Chem. Phys. 112(3) (2008) 853-857. [24] S. Abiej, B.O. Gumkowska, A. Wlochowicz, Investigation of the crystallinity of PA-6/SPS blends by X-ray diffraction and DSC methods, Eur. Polym. J. 33(7) (1997) 1031-1039. [25] H.R. Mahdavi, N. Azizi, M. Arzani, T. Mohammadi, Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane, J. Nat. Gas Sci. Eng. 46(2017) 275-288. [26] A.B. Blyumenfeld, E.V. Kalugina, G.E. Zaikov, Structure thermal stability and thermal stabilization of the engineering polyimideand polysulfone resinsint, J. Polym. Mater. 44(1-2) (1999) 95-105. [27] M.T. Tsehaye, S. Velizarov, B. Van der Bruggen, Stability of polyethersulfone membranes to oxidative agents:a review, Polym. Degrad. Stab. 157(2018) 15-33. [28] Y.C. Hudiono, T.K. Carlisle, J.E. Bara, Y. Zhang, D.L. Gin, R.D. Noble, A threecomponent mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, J. Memb. Sci. 350(1-2) (2010) 117-123. [29] S. Ishaq, R. Tamime, M.R. Bilad, A.L. Khan, Mixed matrix membranes comprising of polysulfone and microporous BIOMOF-1:Preparation and gas separation properties, Sep. Purif. Technol. 210(2019) 442-451. [30] H. Rabiee, A. Ghadimi, T. Mohammadi, Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim] [BF4] gel membranes for CO2/light gases separation, J. Memb. Sci. 476(2015) 286-302. [31] P. Cserjési, N. Nemestóthy, K. Bélafi-Bakó, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, J. Memb. Sci. 349(1-2) (2010) 6-11. |