[1] H. Feng, X. Liu,W. Gao, X. Chen, J.Wang, L. Chen, H.-D. Lüdemann, Evolution of selfdiffusion and local structure in some amines over a wide temperature range at high pressures: a molecular dynamics simulation study, Phys. Chem. Chem. Phys. 12 (45) (2010) 15007-15017.
[2] M. Mukhopadhyay, Natural Extracts Using Supercritical Carbon Dioxide, CRC Press, 2000.
[3] G.Maitland, M. Rigby, E. Smith,W.Wakeham, D. Henderson, Intermolecular Forces: Their Origin and Determination, Physics Today 36 (1983) 57-58.
[4] I.A.McLure, J.E. Ramos, F. del Río, Accurate effective potentials and virial coefficients in real fluids. 1. Pure noble gases and theirmixtures, J. Phys. Chem. B 103 (33) (1999) 7019-7030.
[5] G. Maitland, E. Smith, The intermolecular pair potential of argon, Mol. Phys. 22 (5) (1971) 861-868.
[6] D. Gough, G. Maitland, E. Smith, The direct determination of intermolecular potential energy functions from gas viscosity measurements, Mol. Phys. 24 (1) (1972) 151-161.
[7] D. Gough, E. Smith, G. Maitland, The pair potential energy function for krypton, Mol. Phys. 27 (4) (1974) 867-872.
[8] G. Maitland, W. Wakeham, Direct determination of intermolecular potentials from gaseous transport coefficients alone: part Ⅱ. Application to unlike monatomic interactions, Mol. Phys. 35 (5) (1978) 1443-1469.
[9] S. Chapman, T. Cowling, The Mathematical Theory of Non-uniform Gases, Camb. Univ. Press, 1939.
[10] D. Enskog, Kinetische Theorie der Vorgange in massig verdünnten Gasen, 1917.
[11] R.A. Aziz, V. Nain, J. Carley,W. Taylor, G.McConville, An accurate intermolecular potential for helium, J. Chem. Phys. 70 (9) (1979) 4330-4342.
[12] M.L. Klein, R.A. Aziz, Inert Gases: Potentials, Dynamics, and Energy Transfer in Doped Crystals, vol. 34, Springer-Verlag, 1984.
[13] M.J. Slaman, R.A. Aziz, Transport properties and second virial coefficients for neon, Chem. Eng. Commun. 104 (1-3) (1991) 139-152.
[14] R. Eggenberger, S. Gerber, H. Huber, D. Searles, Ab initio calculation of the second virial coefficient of neon and the potential energy curve of Ne2, Chem. Phys. 156 (3) (1991) 395-401.
[15] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, M.G. Mayer, Molecular Theory of Gases and Liquids, vol. 26, Wiley, New York, 1954.
[16] L. Monchick, E. Mason, R. Munn, F.J. Smith, Transport properties of gaseous He3 and He4, Phys. Rev. 139 (4A) (1965) A1076.
[17] L. Monchick, E. Mason, Transport properties of polar gases, J. Chem. Phys. 35 (5) (1961) 1676-1697.
[18] A. Fenghour,W.A.Wakeham, V. Vesovic, J.Watson, J. Millat, E. Vogel, The viscosity of ammonia, J. Phys. Chem. Ref. Data 24 (5) (1995) 1649-1667.
[19] M.M. Papari, Transport properties of carbon dioxide from an isotropic and effective pair potential energy, Chem. Phys. 288 (2) (2003) 249-259.
[20] J. Moghadasi, M.M. Papari, A. Nekoie, J.V. Sengers, Transport properties of some polyatomic gases from isotropic and effective pair potential energies (part Ⅱ), Chem. Phys. 306 (1) (2004) 229-240.
[21] M.M. Papari, D.Mohammad-aghaiee, B. Haghighi, A. Boushehri, Transport properties of argon-hydrogen gaseousmixture from an effective unlike interaction, Fluid Phase Equilib. 232 (1) (2005) 122-135.
[22] M.M. Papari, D. Mohammad-Aghaie, J. Moghadasi, A. Boushehri, Semi-empirically based assessment for predicting dilute gas transport properties of F2 and Ar-F2 fluids, Bull. Chem. Soc. Jpn. 79 (1) (2006) 67-74.
[23] B. Haghighi, F. Heidari, B. Haghighi, M.M. Papari, B. Haghighi, Prediction of thermal conductivity of R32, R125, R134a, R143a and R152a at zero density via semiempirically- based assessment, Int. J. Air-Cond. Refrig. 19 (01) (2011) 45-56.
[24] J. Moghadasi, M.M. Papari, F. Yousefi, B. Haghighi, Transport coefficients of natural gases, J. Chem. Eng. Jpn 40 (9) (2007) 698-710.
[25] J. Moghadasi, F. Yousefi, M.M. Papari, M.A. Faghihi, A.A. Mohsenipour, Transport properties in mixtures involving carbon dioxide at low and moderate density: test of several intermolecular potential energies and comparison with experiment, Heat Mass Transf. 45 (11) (2009) 1453-1466.
[26] S. Nikmanesh, J. Moghadasi, M.M. Papari, Calculation of transport properties of CF4+ noble gas mixtures, Chin. J. Chem. Eng. 17 (5) (2009) 814-821.
[27] M.M. Papari, J. Moghadasi, S. Nikmanesh, E. Hosseini, A. Boushehri, Modeling thermophysical properties of noble gas involved mixtures, Int. J. Comput. Methods Sing. 8 (01) (2011) 19-39.
[28] D. Mohammad-Aghaie,M.M. Papari, F. Zargari,Modeling transport properties of N2- noble gas mixtures at low and moderate densities, Bull. Chem. Soc. Jpn. 85 (5) (2012) 563-575.
[29] J. Moghadasi, M.M. Papari, D. Mohammad-Aghaie, A. Campo, Gas transport coefficients of light hydrocarbons. Halogenated methane and ethane as candidates for new refrigerants, Bull. Chem. Soc. Jpn. 81 (2) (2008) 220-234.
[30] J. Moghadasi, D.Mohammad-Aghaie, M. Papari, Predicting gas transport coefficients of alternative refrigerant mixtures, Ind. Eng. Chem. Res. 45 (26) (2006) 9211-9223.
[31] J. Moghadasi, D. Mohammad-Aghaie, M.M. Papari, M.A. Faghihi, Predicting gas transport properties of light hydrocarbon mixtures as candidates for new refrigerants, High Temp. High Pressures 37 (4) (2008) 299-316.
[32] M. Schreiber, V. Vesovic, W. Wakeham, Thermal conductivity of multicomponent polyatomic dilute gas mixtures, Int. J. Thermophys. 18 (4) (1997) 925-938.
[33] K. Shukla, A. Firoozabadi, A newmodel of thermal diffusion coefficients in binary hydrocarbon mixtures, Ind. Eng. Chem. Res. 37 (8) (1998) 3331-3342.
[34] B. Thijsse, G.t. Hooft, D. Coombe, H. Knaap, J. Beenakker, Some simplified expressions for the thermal conductivity in an external field, Phys. A 98 (1-2) (1979) 307-312.
[35] J. Millat, V. Vesovic, W. Wakeham, On the validity of the simplified expression for the thermal conductivity of Thijsse et al, Phys. A 148 (1) (1988) 153-164.
[36] V. Vesovic,W. Wakeham, Practical, accurate expressions for the thermal conductivity of atom-diatom gas mixtures, Phys. A 201 (4) (1993) 501-514.
[37] M. Schreiber, V. Vesovic, W.A. Wakeham, Thermal conductivity of atom-molecule dilute gas mixtures, High Temp. High Pressures 29 (6) (1997) 653-658.
[38] B. Najafi, E. Mason, J. Kestin, Improved corresponding states principle for the noble gases, Phys. A 119 (3) (1983) 387-440.
[39] F. Pirani, L.F. Roncaratti, L. Belpassi, F. Tarantelli, D. Cappelletti, Molecular-beam study of the ammonia-noble gas systems: characterization of the isotropic interaction and insights into the nature of the intermolecular potential, J. Chem. Phys. 135 (19) (2011) 194301.
[40] J.E. Ramos, F. del Rio, I.A. McLure, Nonconformal potentials and second virial coefficients inmolecular fluids. Ⅱ. Applications to nonspherical molecules, J. Phys. Chem. B 102 (51) (1998) 10576-10585.
[41] F. del Rio, J.E. Ramos, A. Gil-Villegas, I.A.McLure, Collision diameters, interaction potentials, and virial coefficients of small quasi-spherical molecules, J. Phys. Chem. 100 (21) (1996) 9104-9115.
[42] A. Rakshit, C. Roy, Viscosity and polar-nonpolar interactions in mixtures of inert gases with ammonia, Physica 78 (1) (1974) 153-164.
[43] B. Srivastava, I. Srivastava, Studies on mutual diffusion of polar-nonpolar gas mixtures, J. Chem. Phys. 36 (10) (1962) 2616-2620.
[44] K. Stephan, T. Heckenberger, Thermal Conductivity and Viscosity Data of Fluid Mixtures: Tables, Diagrams, Correlations, and Literature Survey, vol. 10, Scholium International, 1988.
[45] H. Iwasaki, J. Kestin, A. Nagashima, Viscosity of argon—ammonia mixtures, J. Chem. Phys. 40 (10) (1964) 2988-2995.
[46] A. Rakshit, C. Roy, A. Barua, Viscosity of the binary gas mixtures argon-methane and argon-ammonia, J. Chem. Phys. 59 (7) (1973) 3633-3638.
[47] E. Lemmon, M. McLinden, D. Friend, P. Linstrom, W. Mallard, NIST Chemistry WebBook, Nist Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, 2011.
[48] B. Srivastava, A.D. Gupta, Thermal conductivity of binary mixtures of ammonia and inert gases, Br. J. Appl. Phys. 18 (7) (1967) 945. |