[1] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in the process industry, Comput. Chem. Eng. 33(2009) 795-814.[2] K. Fujiwara, M. Kano, S. Hasebe, Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design, Control. Eng. Pract. 20(2012) 371-378.[3] P. Facco, F. Doplicher, F. Bezzo, M. Barolo, Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process, J. Process Control 19(2009) 520-529.[4] C. Shang, X. Gao, F. Yang, D. Huang, Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response, IEEE Trans. Control Syst. Technol. 24(4) (2014) 1550-1557.[5] J. Liu, Developing a soft sensor based on sparse partial least squares with variable selection, J. Process Control 24(2014) 1046-1056.[6] P. Cao, X. Luo, Modeling for soft sensor systems and parameters updating online, J. Process Control 24(6) (2014) 975-990.[7] P. Cao, X. Luo, Soft sensor model derived from Wiener model structure:modeling and identification, Chin. J. Chem. Eng. 22(5) (2014) 538-548.[8] Y. Wu, X. Luo, A novel calibration approach of soft sensor based on multirate data fusion technology, J. Process Control 20(10) (2010) 1252-1260.[9] B. Lin, B. Recke, T. Schmidt, J. Knudsen, S. Jorgensen, Data-driven soft sensor design with multiple-rate sampled data:A comparative study, Ind. Eng. Chem. Res. 48(2009) 5379-5387.[10] J. Wang, T. Chen, B. Huang, Multirate sampled-data systems:Computing fast-rate models, J. Process Control 14(2004) 79-88.[11] F. Ding, T. Chen, Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica 40(10) (2004) 1739-1748.[12] F. Ding, T. Chen, Hierachical identification of lifted state-space models for general dual-rate systems, IEEE Trans. Circuits Syst. Regul. Pap. 52(6) (2005) 1179-1187.[13] J. Ding, F. Ding, The residual based extended least squares identification method for dual-rate systems, Comput. Math. Appl. 56(2008) 1479-1487.[14] H. Raghavan, B. Gopaluni, S. Shah, J. Pakpahan, R. Patwardhan, C. Robson, Gray-box identification of dynamic models for the bleaching operation in a pulp mill, J. Process Control 15(4) (2005) 451-468.[15] Y. Ma, D. Huang, Y. Jin, Discuss about dynamic soft-sensing modeling, J. Chem. Ind. Eng. 56(8) (2005) 1516-1519.[16] C. Shang, X. Huang, A. Johan, D. Huang, Enhancing dynamic soft sensors based on DPLS:A temporal smoothness regularization approach, J. Process Control 28(2015) 17-26.[17] X. Gao, F. Yang, D. Huang, Y. Ding, An iterative two-level optimization method for the modeling of Wiener structure nonlinear dynamic soft sensors, Ind. Eng. Chem. Res. 53(3) (2014) 1172-1178.[18] O.P. Ferreira, M.L.N. Goncalves, P.R. Oliveira, Local convergence analysis of inexact Gauss-Newton like methods under majorant condition, J. Comput. Appl. Math. 236(9) (2012) 2487-2498.[19] A.D. Richard, Gauss-Newton and M-estimation for ARMA processes with infinite variance, Stoch. Process. Appl. 63(1996) 75-95.[20] P.P. Khargonekar, K. Poolla, A. Tannenbaum, Robust control of linear time-invariant plants using periodic compensation, IEEE Trans. Autom. Control 30(1985) 1088-1096.[21] C. Shang, F. Yang, D. Huang, W. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process Control 24(2014) 223-233.[22] H. Tian, S. David, S. Jang, Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach, Ind. Eng. Chem. Res. 49(2010) 4738-4747.[23] O. Bruno, S. Walace, F. Alex, A. Luis, Data-driven soft sensor of downhole pressure for a gas-oil well, Control. Eng. Pract. 22(2014) 34-43.[24] P. Hui, O. Tohru, T. Yukihiro, S. Hideo, N. Kazushi, H. Valerie, M. Masafumi, RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process, Control. Eng. Pract. 12(2004) 191-203. |