[1] Y. Cao, A. Pawlowski, Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis:brief overview and energy efficiency assessment, Renew. Sust. Energ. Rev. 16(2012) 1657-1665.[2] B. Demirel, P. Scherer, The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane:a review, Rev. Environ. Sci. Biotechnol. 7(2008) 173-190.[3] Y. Hu, X. Hao, D. Zhao, K. Fu, Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2, Chemosphere 140(2015) 34-39.[4] I. Bassani, P.G. Kougias, L. Treu, I. Angelidaki, Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions, Environ. Sci. Technol. 49(2015) 12585-12593.[5] P.G.K. Ilaria Bassani, Laura Treu, Irini Angelidaki, Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions, Environ. Sci. Technol. 49(2015) 12585-12593.[6] L. Jourdin, S. Freguia, V. Flexer, J. Keller, Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions, Environ. Sci. Technol. 50(2016) 1982-1989.[7] L. Li, Q. He, Y. Ma, X. Wang, X. Peng, A mesophilic anaerobic digester for treating food waste:process stability and microbial community analysis using pyrosequencing, Microb. Cell Factories 15(2016) 65.[8] K. Sri Bala Kameswari, C. Kalyanaraman, S. Porselvam, K. Thanasekaran, Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes, Clean Technol. Environ. Policy 14(2012) 241-250.[9] Z. Zhao, Y. Zhang, T.L. Woodard, K.P. Nevin, D.R. Lovley, Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials, Bioresour. Technol. 191(2015) 140-145.[10] F.G. Pohland, S. Ghosh, Developments in anaerobic stabilization of organic wastes-the two-phase concept, Environ. Lett. 1(1971) 255-266.[11] A.S. Dieter Deublein, Biogas from Waste and Renewable Resources. An Introduction, Wiley-VCH Velag GmbH & Co. KGaA, 2008.[12] S.T. Oh, A.D. Martin, Glucose contents in anaerobic ethanol stillage digestion manipulate thermodynamic driving force in between hydrogenophilic and acetoclastic methanogens, Chem. Eng. J. 243(2014) 526-536.[13] D.L. Wise, C.L. Cooney, D.C. Augenstein, Biomethanation-anaerobic fermentation of CO2, H2, and CO to methane, Biotechnol. Bioeng. 20(1978) 1153-1172.[14] W. Huang, Z. Wang, Y. Zhou, W.J. Ng, The role of hydrogenotrophic methanogens in an acidogenic reactor, Chemosphere 140(2015) 40-46.[15] H. Xu, S. Gong, Y. Sun, H. Ma, M. Zheng, K. Wang, High-rate hydrogenotrophic methanogenesis for biogas upgrading:the role of anaerobic granules, Environ. Technol. 36(2015) 529-537.[16] G. Luo, I. Angelidaki, Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture, Biotechnol. Bioeng. 109(2012) 2729-2736.[17] W.-M. Wu, M.K. Jain, E.C. de Macario, J.H. Thiele, J.G. Zeikus, Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules, Appl. Microbiol. Biotechnol. 38(1992) 282-290.[18] M. Villano, G. Monaco, F. Aulenta, M. Majone, Electrochemically assisted methane production in a biofilm reactor, J. Power Sources 196(2011) 9467-9472.[19] H. Xu, K. Wang, D.E. Holmes, Bioelectrochemical removal of carbon dioxide (CO2):an innovative method for biogas upgrading, Bioresour. Technol. 173(2014) 392-398.[20] G. Luo, S. Johansson, K. Boe, L. Xie, Q. Zhou, I. Angelidaki, Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor, Biotechnol. Bioeng. 109(2012) 1088-1094.[21] G. Luo, I. Angelidaki, Co-digestion of manure and whey for in situ biogas upgrading by the addition of H-2:process performance and microbial insights, Appl. Microbiol. Biotechnol. 97(2013) 1373-1381.[23] V. Siriwongrungson, R.J. Zeng, I. Angelidaki, Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis, Water Res. 41(2007) 4204-4210.[24] D.G. Mulat, F. Mosbaek, A.J. Ward, D. Polag, M. Greule, F. Keppler, J.L. Nielsen, A. Feilberg, Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane, Waste Manag. 68(2017) 146-156.[25] S.R. Guiot, R. Cimpoia, G. Carayon, Potential of wastewater-treating anaerobic granules for Biomethanation of synthesis gas, Environ. Technol. 45(2011) 2006-2012.[26] D. Pant, A. Singh, G. Van Bogaert, S.I. Olsen, P.S. Nigam, L. Diels, K. Vanbroekhoven, Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters, RSC Adv. 2(2012) 1248-1263.[27] M. Villano, S. Scardala, F. Aulenta, M. Majone, Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell, Bioresour. Technol. 130(2013) 366-371.[28] S. Gajaraj, Y. Huang, P. Zheng, Z. Hu, Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion, Biochem. Eng. J. 117(Part B) (2017) 105-112.[29] B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science 337(2012) 686-690.[30] R.A. Rozendal, A.W. Jeremiasse, H.V.M. Hamelers, C.J.N. Buisman, Hydrogen production with a microbial biocathode, Environ. Sci. Technol. 42(2008) 629-634.[31] H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol. 38(2004) 4040-4046.[32] M. Su, L. Wei, Z. Qiu, G. Wang, J. Shen, Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes, J. Power Sources 301(2016) 29-34.[33] W.W. Cai, W.Z. Liu, C.X. Yang, L. Wang, B. Liang, S. Thangavel, Z.C. Guo, A.J. Wang, Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge, ACS Sustain. Chem. Eng. 4(2016) 4913-4921.[34] W. Liu, W. Cai, Z. Guo, L. Wang, C. Yang, C. Varrone, A. Wang, Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production, Renew. Energy 91(2016) 334-339.[35] D.F. Call, B.E. Logan, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells, Biosens. Bioelectron. 26(2011) 4526-4531.[36] D.F.M. Call, Matthew D. Logan, E. Bruce, High surface area stainless steel brushes as cathodes in microbial electrolysis cells, Environ. Sci. Technol. 43(2009) 2179-2183.[37] S. Farhangi, S. Ebrahimi, M.S. Niasar, Commercial materials as cathode for hydrogen production in microbial electrolysis cell, Biotechnol. Lett. 36(2014) 1987-1992.[38] A. Kadier, M.S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed, N.F. Azman, W. Logrono, Y. Simayi, A.A. Hamid, Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals, Renew. Sust. Energ. Rev. 61(2016) 501-525.[39] A. Kadier, Y. Simayi, K. Chandrasekhar, M. Ismail, M.S. Kalil, Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC), Int. J. Hydrog. Energy 40(2015) 14095-14103.[40] A. Kundu, J.N. Sahu, G. Redzwan, M.A. Hashim, An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell, Int. J. Hydrog. Energy 38(2013) 1745-1757.[41] Y. Zhang, Y. Wang, I. Angelidaki, Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in bioelectro-fenton system, J. Power Sources 291(2015) 108-116.[42] W. Cai, T. Han, Z. Guo, C. Varrone, A. Wang, W. Liu, Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis, Bioresour. Technol. 208(2016) 13-18.[43] W. Cai, W. Liu, D. Cui, A. Wang, Hydrogen production from buffer-free anaerobic fermentation liquid of waste activated sludge using microbial electrolysis system, RSC Adv. 6(2016) 38769-38773.[44] Y.-k. Zhang, X.-h. Liu, X.-w. Liu, Y.-f. Zha, X.-l. Xu, Z.-g. Ren, H.-c. Jiang, H.-c. Wang, Research advances in deriving renewable energy from biomass in wastewater treatment plants, RSC Adv. 6(2016) 55903-55918.[45] Z. Guo, S. Thangavel, L. Wang, Z. He, W. Cai, A. Wang, W. Liu, Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode:the effect of the cathode/anode ratio on bioenergy recovery, Energy Fuel 31(2017) 615-620.[46] C. Liu, B.C. Colon, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science 352(2016) 1210-1213.[47] A.J. Esswein, Y. Surendranath, S.Y. Reece, D.G. Nocera, Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters, Energy Environ. Sci. 4(2011) 499-504.[48] D.J. Batstone, J. Keller, I. Angelidaki, S.V. Kalyuzhnyi, S.G. Pavlostathis, A. Rozzi, W.T.M. Sanders, H. Siegrist, V.A. Vavilin, Anaerobic Digestion Model No. 1(ADM1), IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, IWA Publishing, London, UK, 2002.[49] B. Wett, A. Eladawy, M. Ogurek, Description of nitrogen incorporation and release in ADM1, Water Sci. Technol. 54(2006) 67-76.[50] I.f.A.u.K.e.V.M. Werner-Heisenberg-Str, User Guide of the Software SIMBA# Biogas, 2016.[51] I. Paseka, J. Velicka, Hydrogen evolution and hydrogen sorption on amorphous smooth Me-P(x) (Me=Ni, Co and Fe-Ni) electrodes, Electrochim. Acta 42(1997) 237-242.[52] N. Adu-Gyamfi, S.R. Ravella, P.J. Hobbs, Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production, Bioresour. Technol. 120(2012) 248-255.[53] B.E.L., D.F. Call, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells, Biosens. Bioelectron. 26(2011).[54] M. Badshah, D.M. Lam, J. Liu, B. Mattiasson, Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments, Bioresour. Technol. 114(2012) 262-269.[55] E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 22nd edition APHA-AWWA-WEF, 20121496.[56] G. Esposito, L. Frunzo, A. Panico, F. Pirozzi, Model calibration and validation for OFMSW and sewage sludge co-digestion reactors, Waste Manag. 31(2011) 2527-2535.[57] E. Nordlander, E. Thorin, J. Yan, Investigating the possibility of applying an ADM1 based model to a full-scale co-digestion plant, Biochem. Eng. J. 120(2017) 73-83.[58] D. Montecchio, A. Gallipoli, A. Gianico, G. Mininni, P. Pagliaccia, C.M. Braguglia, Biomethane potential of food waste:modeling the effects of mild thermal pretreatment and digestion temperature, Environ. Technol. 38(2016) 1452-1464.[59] C. Mendes, K. Esquerre, L.M. Queiroz, Application of anaerobic digestion model no. 1 for simulating anaerobic mesophilic sludge digestion, Waste Manag. 35(2015) 89-95.[60] K. Koch, M. Luebken, T. Gehring, M. Wichern, H. Horn, Biogas from grass silage-measurements and modeling with ADM1, Bioresour. Technol. 101(2010) 8158-8165.[61] M.M.D., D.F. Call, B.E. Logan, High surface area stainless steel brushes as cathodes in microbial electrolysis cells, Environ. Sci. Technol. 43(2009) 2179-2183.[62] T. Bo, X. Zhu, L. Zhang, Y. Tao, X. He, D. Li, Z. Yan, A new upgraded biogas production process:coupling microbial electrolysis cell and anaerobic digestion in singlechamber, barrel-shape stainless steel reactor, Electrochem. Commun. 45(2014) 67-70.[63] K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Anaerobic co-digestion process for biogas production:progress, challenges and perspectives, Renew. Sust. Energ. Rev. 76(2017) 1485-1496.[64] S. Chen, A.-E. Rotaru, P.M. Shrestha, N.S. Malvankar, F. Liu, W. Fan, K.P. Nevin, D.R. Lovley, Promoting interspecies electron transfer with biochar, Sci. Rep. 4(2014) 5019.[65] D.J. Batstone, C. Picioreanu, M.C.M. van Loosdrecht, Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms, Water Res. 40(2006) 3099-3108. |