Chinese Journal of Chemical Engineering ›› 2018, Vol. 26 ›› Issue (11): 2292-2302.DOI: 10.1016/j.cjche.2018.04.009
• Special issue of Carbon Capture, Utilisation and Storage • 上一篇 下一篇
Xinglei Zhao1, Qian Cui1, Baodeng Wang1, Xueliang Yan1, Surinder Singh2, Feng Zhang1, Xing Gao1, Yonglong Li1
收稿日期:
2018-02-08
修回日期:
2018-03-28
出版日期:
2018-11-28
发布日期:
2018-12-10
通讯作者:
Xinglei Zhao
基金资助:
Supported by the National Key Research and Development Program of China (2017YFB0603301).
Xinglei Zhao1, Qian Cui1, Baodeng Wang1, Xueliang Yan1, Surinder Singh2, Feng Zhang1, Xing Gao1, Yonglong Li1
Received:
2018-02-08
Revised:
2018-03-28
Online:
2018-11-28
Published:
2018-12-10
Contact:
Xinglei Zhao
Supported by:
Supported by the National Key Research and Development Program of China (2017YFB0603301).
摘要: Under the Paris agreement, China has committed to reducing CO2 emissions by 60%-65% per unit of GDP by 2030. Since CO2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissions in China, it will be necessary to mitigate at least some of these emissions to achieve this goal. Studies by the International Energy Agency (IEA) indicate CCS technology has the potential to contribute 14% of global emission reductions, followed by 40% of higher energy efficiency and 35% of renewable energy, which is considered as the most promising technology to significantly reduce carbon emissions for current coal-fired power plants. Moreover, the announcement of a Chinese national carbon trading market in late 2017 signals an opportunity for the commercial deployment of CO2 capture technologies.
Currently, the only commercially demonstrated technology for post-combustion CO2 capture technology from power plants is solvent-based absorption. While commercially viable, the costs of deploying this technology are high. This has motivated efforts to develop more affordable alternatives, including advanced solvents, membranes, and sorbent capture systems. Of these approaches, advanced solvents have received the most attention in terms of research and demonstration. In contrast, sorbent capture technology has less attention, despite its potential for much lower energy consumption due to the absence of water in the sorbent. This paper reviews recent progress in the development of sorbent materials modified by amine functionalities with an emphasis on material characterization methods and the effects of operating conditions on performance. The main problems and challenges that need to be overcome to improve the competitiveness of sorbent-based capture technologies are discussed.
Xinglei Zhao, Qian Cui, Baodeng Wang, Xueliang Yan, Surinder Singh, Feng Zhang, Xing Gao, Yonglong Li. Recent progress of amine modified sorbents for capturing CO2 from flue gas[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2292-2302.
Xinglei Zhao, Qian Cui, Baodeng Wang, Xueliang Yan, Surinder Singh, Feng Zhang, Xing Gao, Yonglong Li. Recent progress of amine modified sorbents for capturing CO2 from flue gas[J]. Chin.J.Chem.Eng., 2018, 26(11): 2292-2302.
[1] China ratifies Paris climate change agreement ahead of G20.[EB/OL], https://www.theguardian.com/world/2016/sep/03/. [2] C.M. White, B.R. Strazisar, E.J. Granite, J.S. Hoffman, H.W. Pennline, Separation and capture of CO2 from large stationary sources and sequestration in geological formations-Coalbeds and deep saline aquifers, J. Air Waste Manage. Assoc. 53(2003) 645-715. [3] D. Aaron, C. Tsouris, Separation of CO2 from flue gas:A review, Sep. Sci. Technol. 40(2011) 321-348. [4] Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications:Current status and new trends, Energy Environ. Sci. 4(2010) 42-55. [5] B. Dutcher, M. Fan, A.G. Russell, Amine-based CO2 capture technology development from the beginning of 2013-A review, ACS Appl. Mater. Interfaces 7(2015) 2137-2148. [6] W. Xie, X. Ji, T. Fan, X. Feng, X. Lu, CO2 uptake behavior of supported tetraethylenepentamine sorbents, Energy Fuel 30(2016) 5083-5091. [7] Q. Xiao, J. Wen, Y. Guo, J. Hu, J. Wang, F. Zhang, Synthesis, carbonization, and CO2 adsorption properties of phloroglucinol-melamine-formaldehyde polymeric nanofibers, Ind. Eng. Chem. Res. 55(2016) 12667-12674. [8] Q. Wang, Y. Liu, J. Chen, Z. Du, J. Mi, Control of uniform and interconnected macroporous structure in polyHIPE for enhanced CO2 adsorption/desorption kinetics, Environ. Sci. Technol. 50(2016) 7879-7888. [9] M. Gray, Y. Soong, K. Champagne, H. Pennline, J. Baltrus, R. Stevens Jr., R. Khatri, S. Chuang, T. Filburn, Improved immobilized carbon dioxide capture sorbents, Fuel Process. Technol. 86(2005) 1449-1455. [10] L. Wang, M.A. Lei, A. Wang, Q. Liu, T. Zhang, CO2 adsorption on SBA-15 modified by aminosilane, Chin. J. Catal. 28(2007) 805-810. [11] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni, Amine-modified mesocellular silica foams for CO2 capture, Chem. Eng. J. 168(2011) 918-924. [12] R. Serna-Guerrero, A. Sayari, Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2:Kinetics and breakthrough curves, Chem. Eng. J. 161(2010) 182-190. [13] F. Su, C. Lu, S. Kuo, W. Zeng, Adsorption of CO2 on amine-functionalized Y-type zeolites, Energy Fuel 24(2010) 1441-1448. [14] R.S. Franchi, P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2, Ind. Eng. Chem. Res. 44(2005) 8007-8013. [15] G. Hao, W. Li, D. Qian, A. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture, Adv. Mater. 22(2010) 853-857. [16] W. Shen, W. Fan, Nitrogen-containing porous carbons:Synthesis and application, J. Mater. Chem. A 1(2013) 999-1013. [17] M. Sevilla, A.B. Fuertes, Sustainable porous carbons with a superior performance for CO2 capture, Energy Environ. Sci. 4(2011) 1765-1771. [18] J. Gu, W. Kim, Y. Hwang, S. Huh, Template-free synthesis of N-doped porous carbons and their gas sorption properties, Carbon 56(2013) 208-217. [19] J. Gong, B. Michalkiewicz, X. Chen, E. Mijowska, J. Liu, Z. Jiang, X. Wen, T. Tang, Sustainable conversion of mixed plastics into porous carbon nanosheets with high performances in uptake of carbon dioxide and storage of hydrogen, ACS Sustain. Chem. Eng. 2(2014) 2837-2844. [20] P. Moloney, C. Huffman, O. Gorelik, P. Nikolaev, S. Arepalli, R. Allada, M. Springer, L. Yowell, Materials for Space Applications, Materials Research Society, Warrendale, PA 851, 200559-64. [21] F. Su, C. Lu, W. Cnen, H. Bai, J.F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Sci. Total Environ. 407(2009) 3017-3023. [22] T.M. Mcdonald, W.R.L. Lee, J.A. Mason, M.B. Wiers, C.S. Hong, J.R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc), J. Am. Chem. Soc. 134(2012) 7056-7065. [23] R.W. Flaig, T.M. Osborn Popp, A.M. Fracaroli, E.A. Kapustin, M.J. Kalmutzki, R.M. Altamimi, F. Fathieh, J.A. Reimer, O.M. Yaghi, The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions, J. Am. Chem. Soc. 139(2017) 12125-12128. [24] Q. Wang, H. Ma, J. Chen, Z. Du, J. Mi, Interfacial control of polyHIPE with nano-TiO2 particles and polyethylenimine toward actual application in CO2 capture, J. Environ. Chem. Eng. 5(2017) 2807-2814. [25] S.D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A.G. Russell, Q. Wei, M. Fan, Review of recent advances in carbon dioxide separation and capture, RSC Adv. 3(2013) 22739-22773. [26] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture:Prospects for new materials, Angew. Chem. Int. Ed. 49(2010) 6058-6082. [27] M.C. Duke, B. Ladewig, S. Smart, V. Rudolph, J.C.D.D. Costa, Assessment of postcombustion carbon capture technologies for power generation, Front. Chem. Eng. China 4(2010) 184-195. [28] A.S. Bhown, B.C. Freeman, Analysis and status of post-combustion carbon dioxide capture technologies, Environ. Sci. Technol. 45(2011) 8624-8632. [29] A.M. Kierzkowska, P. Roberta, C.R. Muller, CaO-based CO2 sorbents:From fundamentals to the development of new, highly effective materials, ChemSusChem 6(2013) 1130-1148. [30] Y. Liu, Q. Ye, M. Shen, J. Shi, J. Chen, H. Pan, Y. Shi, Carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions, Environ. Sci. Technol. 45(2011) 5710-5716. [31] M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, CO2 capture by adsorption with nitrogen enriched carbons, Fuel 86(2007) 2204-2212. [32] A. Samanta, A. Zhao, G.K. Shimizu, P. Sarkar, R. Gupta, Post-combustion CO2 capture using solid sorbents:A review, Ind. Eng. Chem. Res. 51(2011) 1438-1463. [33] W. Li, S. Choi, J.H. Drese, M. Hornbostel, G. Krishnan, P.M. Eisenberger, C.W. Jones, Steam-stripping for regeneration of supported amine-based CO2 adsorbents, ChemSusChem 3(2010) 899-903. [34] W.J. Son, J.S. Choi, W.S. Ahn, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous Mesoporous Mater. 113(2008) 31-40. [35] X.C. Xu, C.S. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel polyethyleniminemodified mesoporous molecular sieve of mcm-41 type as high-capacity adsorbent for CO2 capture, Energy Fuel 16(2002) 1463-1469. [36] X.C. Xu, C.S. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2"molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater. 62(2003) 29-45. [37] X.C. Xu, C.S. Song, B.G. Miller, A.W. Scaroni, Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41, Ind. Eng. Chem. Res. 44(2005) 8113-8119. [38] X.W. Liu, L. Zhou, X. Fu, Y. Sun, W. Su, Y.P. Zhou, Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4, Chem. Eng. Sci. 62(2007) 1101-1110. [39] X.X. Wang, V. Schwartz, J.C. Clark, X.L. Ma, S.H. Overbury, X.C. Xu, C.S. Song, Infrared study of CO2 sorption over ‘molecular basket’ sorbent consisting of polyethylenimine-modified mesoporous molecular sieve, J. Phys. Chem. C 113(2009) 7260-7268. [40] S. Kim, J. Ida, V.V. Guliants, J.Y.S. Lin, Tailoring pore properties of MCM-48 silica for selective adsorption of CO2, J. Phys. Chem. B 109(2005) 6287-6293. [41] P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption, Ind. Eng. Chem. Res. 45(2006) 3248-3255. [42] R.A. Khatri, S.S.C. Chuang, Y. Soong, M. Gray, Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture, Energy Fuel 20(2006) 1514-1520. [43] A.A. Alhwaige, H. Ishida, S. Qutubuddin, Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzoxazine nanocomposites, ACS Sustain. Chem. Eng. 4(2016) 1286-1295. [44] G.P. Hao, W.C. Li, D. Qian, G.H. Wang, W.P. Zhang, T. Zhang, A.Q. Wang, F. Schuth, H.J. Bongard, A.H. Lu, Structurally designed synthesis of mechanically stable poly-(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents, J. Am. Chem. Soc. 133(2011) 11378-11388. [45] Q. Ye, J. Jiang, C. Wang, Y. Liu, H. Pan, Y. Shi, Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature, Energy Fuel 26(2012) 2497-2504. [46] Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica:Application for gas purification, Ind. Eng. Chem. Res. 49(2010) 359-365. [47] Z. Chen, S. Deng, H. Wei, B. Wang, J. Huang, G. Yu, Polyethylenimine-impregnated resin for high CO2 adsorption:An efficient adsorbent for CO2 capture from simulated flue gas and ambient air, ACS Appl. Mater. Interfaces 5(2013) 6937-6945. [48] M.E. Pinto, S.H. Pang, C.W. Jones, Adsorption microcalorimetry of CO2 in confined aminopolymers, Langmuir 33(2017) 117-124. [49] R. Kishor, A.K. Ghoshal, Amine-modified mesoporous silica for CO2 adsorption:The role of structural parameters, Ind. Eng. Chem. Res. 56(2017) 6078-6087. [50] L. Ma, R. Bai, G. Hu, R. Chen, X. Hu, W. Dai, H.F.M. Dacosta, M. Fan, Capturing CO2 with amine-impregnated titanium oxides, Energy Fuel 27(2013) 5433-5439. [51] F.Q. Liu, L. Wang, Z.G. Huang, C.Q. Li, W. Li, R.X. Li, W.H. Li, Amine-tethered sorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air, ACS Appl. Mater. Interfaces 6(2014) 4371-4381. [52] W.H. Daly, D. Poche, The preparation of n-carboxyanhydrides of alpha-amino-acids using bis(trichloromethyl) carbonate, Tetrahedron Lett. 29(1988) 5859-5862. [53] M.L. Pinto, L. Mafra, J.M. Guil, J. Pires, J. Rocha, Adsorption and activation of CO2 by amine-modified nanoporous materials studied by solid-state NMR and 13CO2 adsorption, Chem. Mater. 23(2011) 1387-1395. [54] F.Q. Liu, L. Wang, Z.G. Huang, C.Q. Li, W. Li, R.X. Li, W.H. Li, Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air, ACS Appl. Mater. Interfaces 6(2014) 4371-4381. [55] B.J. Maring, P.A. Webley, A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications, Int. J. Greenhouse Gas Control 15(2013) 16-31. [56] P. Li, B. Ge, S. Zhang, S. Chen, Q. Zhang, Y. Zhao, CO2 capture by polyethyleniminemodified fibrous adsorbent, Langmuir 24(2008) 6567-6574. [57] M.W. Hahn, J. Jelic, E. Berger, K. Reuter, A. Jentys, J.A. Lercher, Role of amine functionality for CO2 chemisorption on silica, J. Phys. Chem. B 120(2016) 1988-1995. [58] R. Numaguchi, J. Fujiki, H. Yamada, Firoz, A. Chowdhury, K. Kida, K. Goto, T. Okumura, K. Yoshizawa, K. Yogo, Development of post-combustion CO2 capture system using amine-impregnated solid sorbent, Energy Procedia 114(2017) 2304-2312. [59] A.A. Govar, A.D. Ebner, J.A. Ritter, Effect of H2O vapor on the adsorption and desorption behavior of CO2 in a solid amine sorbent, Energy Fuel 30(2016) 10653-10660. [60] P.J.E. Harlick, A. Sayari, Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance, Ind. Eng. Chem. Res. 46(2007) 446-458. [61] R. Serna-Guerrero, E. Da'na, A. Sayari, New insights into the interactions of CO2 with amine-functionalized silica, Ind. Eng. Chem. Res. 47(2008) 9406-9412. [62] A. Danon, P.C. Star, E. Weitz, FTIR study of CO2 adsorption on amine-grafted SBA-15:Elucidation of adsorbed species, J. Phys. Chem. C 115(2011) 11540-11549. [63] C.T. Hung, C.F. Yang, J.S. Lin, S.J. Huang, Y.C. Chang, S.B. Liu, Capture of carbon dioxide by polyamine-immobilized mesostructured silica:A solid-state NMR study, Microporous Mesoporous Mater. 238(2017) 2-13. [64] Z. Bacsik, N. Ahlsten, A. Ziadi, G. Zhao, A.E. Garcia-Bennett, B. Martin-Matute, N. Hedin, Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-propylamine, Langmuir 27(2011) 11118-11128. [65] W.C. Wilfong, C.S. Srikanth, S.S.C. Chaung, In situ ATR and DRIFTS studies of the nature of adsorbed CO2 on tetraethylenepentamine films, ACS Appl. Mater. Interfaces 6(2014) 13617-13626. [66] Q. Liu, J. Shi, Q. Wang, M. Tao, Y. He, Y. Shi, Carbon dioxide capture with polyethylenimine-functionalized industrial-grade multiwalled carbon nanotubes, Ind. Eng. Chem. Res. 53(2014) 17468-17475. [67] T.C. Dos Santos, S. Bourrelly, P.L. Llewellyn, J.W. Carneiro, C.M. Ronconi, Adsorption of CO2 on amine-functionalised MCM-41:Experimental and theoretical studies, Phys. Chem. Chem. Phys. 17(2015) 11095-11102. [68] S. Sutanto, J.W. Dijkstra, J.A.Z. Pieterse, J. Boon, P. Hauwert, D.W.F. Brilman, CO2 removal from biogas with supported amine sorbents:First technical evaluation based on experimental data, Sep. Purif. Technol. 184(2017) 12-25. [69] J.C. Hicks, C.W. Jones, Controlling the density of amine sites on silica surfaces using benzyl spacers, Langmuir 22(2006) 2676-2681. [70] J.C. Hicks, R. Dabestani, A.C.B. Iii, C.W. Jones, Spacing and site isolation of amine groups in 3-aminopropyl-grafted silica materials:The role of protecting groups, Chem. Mater. 18(2006) 5022-5032. [71] J.D. Bass, A. Katz, Bifunctional surface imprinting of silica:Thermolytic synthesis and characterization of discrete thiol-amine functional group pairs, Chem. Mater. 18(2006) 1611-1620. [72] Y. Wang, T. Du, Y. Song, S. Che, X. Fang, L. Zhou, Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture, Solid State Sci. 73(2017) 27-35. [73] G. Zhang, P. Zhao, Y. Xu, Development of amine-functionalized hierarchically porous silica for CO2 capture, J. Ind. Eng. Chem. 54(2017) 59-68. [74] C. Chen, W.J. Son, K.S. You, J.W. Ahn, W.S. Ahn, Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity, Chem. Eng. J. 161(2010) 46-52. [75] S. Choi, M.L. Gray, C.W. Jones, Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air, ChemSusChem 4(2011) 628-635. [76] W.R.A. Jr, J.R. Kitchin, Evaluation of a primary amine-functionalized ion-exchange resin for CO2 capture, Ind. Eng. Chem. Res. 51(2012) 6907-6915. [77] D. Lee, Y. Jin, N. Jung, J. Lee, J. Lee, Y.S. Jeong, S. Jeon, Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array, Environ. Sci. Technol. 45(2011) 5704-5709. [78] M.W. Hahn, M. Steib, A. Jentys, J.A. Lercher, Mechanism and kinetics of CO2 adsorption on surface bonded amines, J. Phys. Chem. C 119(2015) 4126-4135. [79] Z. Zhang, B. Wang, Q. Sun, X. Ma, Enhancing sorption performance of solid amine sorbents for CO2 capture by additives, Energy Procedia 37(2013) 205-210. [80] S.A. Didas, M.A. Sakwa-Novak, G.S. Foo, C. Sievers, C.W. Jones, Effect of amine surface coverage on the co-adsorption of CO2 and water:Spectral deconvolution of adsorbed species, J. Phys. Chem. Lett. 5(2014) 4194-4200. [81] H. Zhang, A. Goeppert, G.A. Olah, G.K.S. Prakash, Remarkable effect of moisture on the CO2 adsorption of nano-silica supported linear and branched polyethylenimine, J. CO2 Util. 19(2017) 91-99. [82] F. Rezaei, R.P. Lively, Y. Labreche, G. Chen, Y. Fan, W.J. Koros, C.W. Jones, Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas, ACS Appl. Mater. Interfaces 5(2013) 3921-3931. [83] C. Gebald, J.A. Wurzbacher, A. Borgschulte, T. Zimmermann, A. Steinfeld, Singlecomponent and binary CO2 and H2O adsorption of amine-functionalized cellulose, Environ. Sci. Technol. 48(2014) 2497-2504. [84] R. Serna-Guerrero, Y. Belmabkhout, A. Sayari, Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica, Chem. Eng. J. 158(2010) 513-519. [85] P.D. Jadhav, R.V. Chatti, R.B. Biniwale, N.K. Labhsetwar, S. Devotta, S.S. Rayalu, Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures, Energy Fuel 21(2007) 3555-3559. [86] E.S. Sanz-Perez, C.R. Murdock, S.A. Didas, C.W. Jones, Direct capture of CO2 from ambient air, Chem. Rev. 116(2016) 11840-11876. [87] K. Li, J.D. Kress, D.S. Mebane, The mechanism of CO2 adsorption under dry and humid conditions in mesoporous silica-supported amine sorbents, J. Phys. Chem. C 120(2016) 23683-23691. [88] J.J. Lee, C.H. Chen, D. Shimon, S.E. Hayes, C. Sievers, C.W. Jones, Effect of humidity on the CO2 adsorption of tertiary amine grafted SBA-15, J. Phys. Chem. C 121(2017) 23480-23487. [89] P. Zhao, G. Zhang, Y. Sun, Y. Xu, CO2 adsorption behavior and kinetics on aminefunctionalized composites silica with trimodal nanoporous structure, Energy Fuel 31(2017) 12508-12520. [90] M. Fayaz, A. Sayari, Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica, ACS Appl. Mater. Interfaces 9(2017) 43747-43754. [91] L. Wang, M. Yao, X. Hu, G. Hu, J. Lu, M. Luo, M. Fan, Amine-modified ordered mesoporous silica:The effect of pore size on CO2 capture performance, Appl. Surf. Sci. 324(2015) 286-292. [92] A. Heydari-Gorji, Y. Yang, A. Sayari, Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas, Energy Fuel 25(2011) 4206-4210. [93] C. Chen, S.T. Yang, W.S. Ahn, R. Ryoo, Amine-impregnated silica monolith with a hierarchical pore structure:Enhancement of CO2 capture capacity, Chem. Commun. 24(2009) 3627-3629. [94] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni, Amine-modified mesocellular silica foams for CO2 capture, Chem. Eng. J. 168(2011) 918-924. [95] A. Ntiamoah, J. Ling, P. Xiao, P.A. Webley, Y. Zhai, CO2 capture by temperature swing adsorption:Use of hot CO2-rich gas for regeneration, Ind. Eng. Chem. Res. 55(2016) 703-713. [96] H. Krutka, S. Sjostrom, T. Starns, M. Dillon, R. Silverman, Post-combustion CO2 capture using solid sorbents:1 MWe pilot evaluation, Energy Procedia 37(2013) 73-88. [97] K.M. Li, J.G. Jiang, S.C. Tian, X.J. Chen, F. Yan, Influence of silica types on synthesis and performance of amine-silica hybrid materials used for CO2 capture, J. Phys. Chem. C 118(2014) 2454-2462. [98] F.Y. Chang, K.J. Chao, H.H. Cheng, C.S. Tan, Adsorption of CO2 onto amine-grafted mesoporous silicas, Sep. Purif. Technol. 70(2010) 87-95. [99] P. Bollini, S. Choi, J.H. Drese, C.W. Jones, Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO2 capture, Energy Fuel 25(2011) 2416-2425. [100] A. Heydari-Gorji, Y. Belmabkhout, A. Sayari, Degradation of amine-supported CO2 adsorbents in the presence of oxygen-containing gases, Microporous Mesoporous Mater. 145(2011) 145-149. [101] G. Calleja, R. Sanz, A. Arencibia, E.S. Sanz-Perez, Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2, Top. Catal. 54(2011) 135-145. [102] A. Sayari, Y. Belmabkhout, Stabilization of amine-containing CO2 adsorbents:Dramatic effect of water vapor, J. Am. Chem. Soc. 132(2010) 6312-6314. [103] A. Heydari-Gorji, A. Sayari, Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents, Ind. Eng. Chem. Res. 51(2012) 6887-6894. [104] T.C. Drage, A. Arenillas, K.M. Smith, C.E. Snape, Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies, Microporous Mesoporous Mater. 116(2008) 504-512. [105] A. Sayari, Y. Belmabkhout, E. Da'na, CO2 deactivation of supported amines:Does the nature of amine matter, Langmuir 28(2012) 4241-4247. [106] A. Sayari, A. Heydari-Gorji, Y. Yang, CO2-induced degradation of amine-containing adsorbents:Reaction products and pathways, J. Am. Chem. Soc. 134(2012) 13834-13842. [107] K. Kim, Y. Son, W.B. Lee, K.S. Lee, Moving bed adsorption process with internal heat integration for carbon dioxide capture, Int. J. Greenhouse Gas Control 17(2013) 13-24. [108] T. Okumura, T. Ogino, S. Nishibe, Y. Nonaka, T. Shoji, T. Higashi, CO2 capture test for a moving-bed system utilizing low-temperature steam, Energy Procedia 63(2014) 2249-2254. [109] N. Hedin, L. Andersson, L. Bergstrom, J.Y. Yan, Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption, Appl. Energy 104(2013) 418-433. [110] M.M.F. Hasan, R.C. Baliban, J.A. Elia, C.A. Floudas, Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 2. Pressure swing adsorption and vacuum swing adsorption processes, Ind. Eng. Chem. Res. 51(2012) 15665-15682. [111] A.L. Chaffee, G.P. Knowles, Z. Liang, J. Zhang, P. Xiao, P.A. Webley, CO2 capture by adsorption:Materials and process development, Int. J. Greenhouse Gas Control 1(2007) 11-18. |
[1] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin[J]. 中国化学工程学报, 2023, 59(7): 92-104. |
[2] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine[J]. 中国化学工程学报, 2023, 56(4): 225-232. |
[3] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption[J]. 中国化学工程学报, 2023, 54(2): 36-43. |
[4] | Yingjun Lin. Whole-process optimization for industrial production of glucosamine sulfate sodium chloride based on QbD concept[J]. 中国化学工程学报, 2023, 54(2): 153-161. |
[5] | Shan Liu, Wenqi Zhong, Xi Chen, Li Sun, Lukuan Yang. Multiobjective economic model predictive control using utopia-tracking for the wet flue gas desulphurization system[J]. 中国化学工程学报, 2023, 54(2): 343-352. |
[6] | An Wang, Zhongyu Hou. Improving the energy efficiency of surface dielectric barrier discharge devices for plasma nitric oxide conversion utilizing active flow control[J]. 中国化学工程学报, 2023, 53(1): 270-279. |
[7] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts[J]. 中国化学工程学报, 2023, 53(1): 310-316. |
[8] | Heping Xie, Yunpeng Wang, Tao Liu, Yifan Wu, Wenchuan Jiang, Cheng Lan, Zhiyu Zhao, Liangyu Zhu, Dongsheng Yang. Electrochemical CO2 mineralization for red mud treatment driven by hydrogen-cycled membrane electrolysis[J]. 中国化学工程学报, 2022, 43(3): 14-23. |
[9] | Yihan Yin, Aoqian Qiu, Hongxia Gao, Yanqing Na, Zhiwu Liang. Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower[J]. 中国化学工程学报, 2022, 43(3): 135-142. |
[10] | Xiaomeng Zhao, Xingyu Li, Changjun Liu, Shan Zhong, Houfang Lu, Hairong Yue, Kui Ma, Lei Song, Siyang Tang, Bin Liang. The quasi-activity coefficients of non-electrolytes in aqueous solution with organic ions and its application on the phase splitting behaviors prediction for CO2 absorption[J]. 中国化学工程学报, 2022, 43(3): 316-323. |
[11] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas[J]. 中国化学工程学报, 2022, 43(3): 335-342. |
[12] | Junya Wang, Kai Chen, Yi Wang, Jiuming Lei, Abdullah Alsubaie, Ping Ning, Shikun Wen, Taiping Zhang, Abdulraheem S.A. Almalki, A. Alhadhrami, Zhiping Lin, Hassan Algadi, Zhanhu Guo. Effect of K2CO3 doping on CO2 sorption performance of silicate lithium-based sorbent prepared from citric acid treated sediment[J]. 中国化学工程学报, 2022, 51(11): 10-20. |
[13] | Sihan Li, Yuxuan Yang, Kuo Su, Bao Zhang, Yaqing Feng. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells[J]. 中国化学工程学报, 2022, 50(10): 29-42. |
[14] | Ye Yuan, Yurui Pan, Menglong Sheng, Guangyu Xing, Ming Wang, Jixiao Wang, Zhi Wang. Synthesis and optimization of high-performance amine-based polymer for CO2 separation[J]. 中国化学工程学报, 2022, 50(10): 168-176. |
[15] | Dongqi An, Yuyao Yang, Weixin Zou, Yandi Cai, Qing Tong, Jingfang Sun, Lin Dong. Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst[J]. 中国化学工程学报, 2022, 50(10): 301-309. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 871
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||