中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (7): 1566-1571.DOI: 10.1016/j.cjche.2019.01.032
• Selected Papers on Sustainable Chemical Process Systems • 上一篇 下一篇
Chandni Joshi, Jeffrey Seay
收稿日期:
2018-11-02
出版日期:
2019-07-28
发布日期:
2019-10-14
通讯作者:
Jeffrey Seay
Chandni Joshi, Jeffrey Seay
Received:
2018-11-02
Online:
2019-07-28
Published:
2019-10-14
Contact:
Jeffrey Seay
摘要: Despite the current threat from climate change, plastic collecting in the world's oceans, and the steady loss of biodiversity, the world continually fails to take action with regard to our rapidly changing ecosystem. Unfortunately, waiting on governments to act is no longer a viable option. Rapid change is needed and the pace of diplomacy is simply too slow. Democratic governments are reactionary and taking action to solve future problems is not a priority, even as the threat of potential ecological catastrophe draws ever closer. Change is in the hands of individuals, and it is our decisions and behaviors that will influence the future of our planet and our ability to inhabit it. Therefore, building momentum for sustainable behavior must begin with individuals. The neoliberal approach to environmental protection posits that individuals are motivated by rational self-interest, and that economic incentives are necessary to achieve environmental goals. However, recent research suggests that monetary gain alone actually negatively impacts behavior, and often neglects the rural poor. As a result, models for projects designed to benefit the environment need more than just a monetary incentive, they must incorporate all three pillars of sustainability:environment, economy and society. One approach for building momentum for sustainable behavior with regard to municipal solid waste management, particularly in the developing world, is by implementing Locally Managed Decentralized Circular Economy (LMDCE) principles. This contribution will describe the role behavioral economics plays in the choices made by producers and consumers. The results of a case study on applying LMDCE principles in Uganda to manage waste plastic accumulation by conversion to fuel oil will be presented.
Chandni Joshi, Jeffrey Seay. Building momentum for sustainable behaviors in developing regions using Locally Managed Decentralized Circular Economy principles[J]. 中国化学工程学报, 2019, 27(7): 1566-1571.
Chandni Joshi, Jeffrey Seay. Building momentum for sustainable behaviors in developing regions using Locally Managed Decentralized Circular Economy principles[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1566-1571.
[1] H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Food security:The challenge of feeding 9 billion people, Science 327(5967) (2010) 812-818. [2] F. Tonelli, S. Evans, P. Taticchi, Industrial sustainability:Challenges, perspectives, actions, IJBI 7(2013) 143. [3] E.W.T. Ngai, C.T. Daniel Ng, G.Q. Huang, Energy sustainability for production design and operations, Int. J. Prod. Econ. 146(2) (2013) 383-385. [4] P.V. Kamat, Meeting the clean energy demand:Nanostructure architectures for solar energy conversion, J. Phys. Chem. C 111(7) (2007) 2834-2860. [5] A. Betancourt-Torcat, A. Elkamel, L. Ricardez-Sandoval, Optimal integration of nuclear energy and water management into the oil sands operations, AIChE J. 58(11) (2012) 3433-3453. [6] S. Suthar, A.K. Nema, M. Chabukdhara, S.K. Gupta, Assessment of metals in water and sediments of Hindon River, India:impact of industrial and urban discharges, J. Hazard. Mater. 171(1-3) (2009) 1088-1095. [7] M. Moradi-Aliabadi, Y. Huang, Decision support for enhancement of manufacturing sustainability:A hierarchical control approach, ACS Sustain. Chem. Eng. 6(4) (2018) 4809-4820. [8] M. Moradi-Aliabadi, Y. Huang, Multistage optimization for chemical process sustainability enhancement under uncertainty, ACS Sustain. Chem. Eng. 4(11) (2016) 6133-6143. [9] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38(2) (2012) 215-282. [10] S.C. Bayham, A. Tong, M. Kathe, L.-S. Fan, Chemical looping technology for energy and chemical production, Wires Energy Environ. 5(2) (2016) 216-241. [11] International Energy Agency, Key World Energy, Statistics 2017, https://doi.org/10.1787/9789264095243-en. [12] M. Hossein Sahraei, D. McCalden, R. Hughes, L.A. Ricardez-Sandoval, A survey on current advanced IGCC power plant technologies, sensors and control systems, Fuel 137(2014) 245-259. [13] S. Mills, Coal-fired CCS Demonstration Plants, 2012, IEA Clean Coal Centre, London, UK, 2012. [14] L.F. de Diego, F. García-Labiano, P. Gayán, J. Celaya, J.M. Palacios, J. Adánez, Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier, Fuel 86(2007) 1036-1045. [15] A. Nandy, C. Loha, S. Gu, P. Sarkar, M.K. Karmakar, P.K. Chatterjee, Present status and overview of chemical looping combustion technology, Renew. Sust. Energ. Rev. 59(2016) 597-619. [16] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture:Prospects for new materials, Angew. Chem. Int. Ed. Engl. 49(35) (2010) 6058-6082. [17] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Control 2(2008) 9-20. [18] S. Vasudevan, S. Farooq, I.A. Karimi, M. Saeys, M.C.G. Quah, R. Agrawal, Energy penalty estimates for CO2 capture:Comparison between fuel types and capture-combustion modes, Energy 103(2016) 709-714. [19] B. Metz, Carbon Dioxide Capture and Storage:Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2005. [20] T. Nittaya, P.L. Douglas, E. Croiset, L.A. Ricardez-Sandoval, Dynamic modelling and controllability studies of a commercial-scale MEA absorption processes for CO2 capture from coal-fired power plants, Energy Procedia 63(2014) 1595-1600. [21] M. Hossein Sahraei, L.A. Ricardez-Sandoval, Controllability and optimal scheduling of a CO2 capture plant using model predictive control, Int. J. Greenhouse Gas Control 30(2014) 58-71. [22] C. Dong, S. Sheng, W. Qin, Q. Lu, Y. Zhao, X. Wang, J. Zhang, Density functional theory study on activity of alpha-Fe2O3 in chemical-looping combustion system, Appl. Surf. Sci. 257(2011) 8647-8652. [23] X. Cai, X. Wang, X. Guo, C.G. Zheng, Mechanism study of reaction between CO and NiO(001) surface during chemical-looping combustion:Role of oxygen, Chem. Eng. J. 244(2014) 464-472. [24] F. Li, S. Luo, Z. Sun, X. Bao, L.-S. Fan, Role of metal oxide support in redox reactions of iron oxide for chemical looping applications:experiments and density functional theory calculations, Energy Environ. Sci. 4(2011) 3661-3667. [25] L. Zhao, Q.Y. Yang, Q.T. Ma, C.L. Zhong, J.G. Mi, D.H. Liu, A force field for dynamic cu-BTC metal-organic framework, J. Mol. Model. 17(2) (2011) 227-234. [26] M.A. Hussain, Y. Soujanya, G.N. Sastry, Computational design of functionalized imidazolate linkers of zeolitic imidazolate frameworks for enhanced CO2 adsorption, J. Phys. Chem. C 119(41) (2015) 23607-23618. [27] D.D. Borges, M. Prakash, N.A. Ramsahye, P.L. Llewellyn, S. Surble, P. Horcajada, C. Serre, G. Maurin, Computational exploration of the gas adsorption on the iron tetracarboxylate metal-organic framework MIL-102, Mol. Simul. 41(16-17) (2015) 1357-1370. [28] S.N. Paglieri, J.D. Way, Innovations in palladium membrane research, Sep. Purif. Methods 31(1) (2002) 1-169. [29] Y. Wang, W. Wang, S. Zhu, L. Guo, Z. Zhang, P. Li, The mechanisms study of the porous graphene for the purification of the mixed gases:A multi-scale computational method, Comput. Mater. Sci. 143(2018) 277-285. [30] T. Watanabe, S. Keskin, S. Nair, D.S. Sholl, Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations:Cu(hfipbb)(H2hfipbb)0.5, Phys. Chem. Chem. Phys. 11(48) (2009) 11389-11394. [31] A. Zukal, C.O. Arean, M.R. Delgado, P. Nachtigall, A. Pulido, J. Mayerová, J. Čejka, Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite, Microporous Mesoporous Mater. 146(1-3) (2011) 97-105. [32] P. Nachtigall, M.R. Delgado, D. Nachtigallova, C.O. Arean, The nature of cationic adsorption sites in alkaline zeolites-Single, dual and multiple cation sites, Phys. Chem. Chem. Phys. 14(5) (2012) 1552-1569. [33] A.R. Shaikh, H. Karkhanechi, E. Kamio, T. Yoshioka, H. Matsuyama, Quantum mechanical and molecular dynamics simulations of dual-amino-acid ionic liquids for CO2 capture, J. Phys. Chem. C 120(49) (2016) 27734-27745. [34] G. Garcia, M. Atilhan, S. Aparicio, Simultaneous CO2 and SO2 capture by using ionic liquids:A theoretical approach, Phys. Chem. Chem. Phys. 19(7) (2017) 5411-5422. [35] B. Zhang, A.C.T. van Duin, J.K. Johnson, Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures, J. Phys. Chem. B 118(41) (2014) 12008-12016. [36] Y. Jiao, Y. Zheng, S.C. Smith, A.J. Du, Z.H. Zhu, Electrocatalytically switchable CO2 capture:First principle computational exploration of carbon nanotubes with pyridinic nitrogen, ChemSusChem 7(2) (2014) 435-441. [37] J.J. Mo, Y. Xue, X.Q. Liu, N.X. Qiu, W. Chu, H.P. Xie, Quantum chemical studies on adsorption of CO2 on nitrogen-containing molecular segment models of coal, Surf. Sci. 616(2013) 85-92. [38] A.S. Rad, V.P. Foukolaei, Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O, Synth. Met. 210(2015) 171-178. [39] M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Characterization of the porous structure of SBA-15, Chem. Mater. 12(7) (2000) 1961-1968. [40] A. Cauvel, D. Brunel, F. Direnzo, F. Fajula, Organic lining of MCM-41-type silicas, in:AIP Conference Proceedings, Woodbury, 1996. [41] T.T. Zhang, Y.S. Yu, Z.X. Zhang, An interactive chemical enhancement of CO2 capture in the MEA/PZ/AMP/DEA binary solutions, Int. J. Greenhouse Gas Control 74(2018) 119-129. [42] H.M. Stowe, G.S. Hwang, Fundamental understanding of CO2 capture and regeneration in aqueous amines from first-principles studies:Recent progress and remaining challenges, Ind. Eng. Chem. Res. 56(24) (2017) 6887-6899. [43] T. Nittaya, P.L. Douglas, E. Croiset, L.A. Ricardez-Sandoval, Dynamic modeling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes, Ind. Eng. Chem. Res. 53(28) (2014) 11411-11426. [44] J.-C. Charpentier, In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money), Chem. Eng. J. 134(1-3) (2007) 84-92. [45] D. Sholl, J.A. Steckel, Density Functional Theory:A Practical Introduction, John Wiley & Sons, 2011. [46] A.V. Larin, A. Mace, A.A. Rybakov, A. Laaksonen, Carbonate "door" in the NaKA zeolite as the reason of higher CO2 uptake relative to N2, Microporous Mesoporous Mater. 162(2012) 98-104. [47] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113(18) (2009) 6378-6396. [48] H. Yamada, Y. Matsuzaki, T. Higashii, S. Kazama, Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-amino-2-methyl-1-propanol using a continuum solvation model, J. Phys. Chem. A 115(14) (2011) 3079-3086. [49] K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2(110)as a function of oxygen pressure, Phys. Rev. B 65(3) (2001). [50] K. Reuter, M. Scheffler, Composition and structure of the RuO2(110)surface in an O2 and CO environment:Implications for the catalytic formation of CO2, Phys. Rev. B 68(4) (2003). [51] H. Yang, Z. Xu, M. Fan, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture:A review, J. Environ. Sci. 20(2008) 14-27. [52] A. Lyngfelt, B. Leckner, T. Mattisson, A fluidized-bed combustion process with inherent CO2 separation:Application of chemical-looping combustion, Chem. Eng. Sci. 56(10) (2001) 3101-3113. [53] H. Leion, T. Mattisson, A. Lyngfelt, Solid fuels in chemical-looping combustion, Int. J. Greenhouse Gas Control 2(2) (2008) 180-193. [54] E. Jerndal, T. Mattisson, A. Lyngfelt, Thermal analysis of chemical-looping combustion, Chem. Eng. Res. Des. 84(A9) (2006) 795-806. [55] P. Cho, T. Mattisson, A. Lyngfelt, Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion, Fuel 83(9) (2004) 1215-1225. [56] Y. Li, C. Zhao, H. Chen, Y. Liu, Enhancement of ca-based sorbent multicyclic behavior in ca looping process for CO2 separation, Chem. Eng. Technol. 32(4) (2009) 548-555. [57] I. Martínez, B. Arias, G.S. Grasa, J.C. Abanades, CO2 capture in existing power plants using second generation Ca-looping systems firing biomass in the calciner, J. Clean. Prod. 187(2018) 638-649. [58] L. Liu, D. Hong, X. Guo, A study of metals promoted CaO-based CO2 sorbents for high temperature application by combining experimental and DFT calculations, J. CO2 Util. 22(2017) 155-163. [59] M. Schmitz, C.J. Linderholm, Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10 kW pilot, Appl. Energy 169(2016) 729-737. [60] M. Mehrpooya, M.M. Moftakhari Sharifzadeh, M. Rajabi, M. Aghbashlo, M. Tabatabai, S. Hosseinpour, S. Ramakrishna, Design of an integrated process for simultaneous chemical looping hydrogen production and electricity generation with CO2 capture, Int. J. Hydrog. Energy 42(12) (2017) 8486-8496. [61] H. Fang, L. Haibin, Z. Zengli, Advancements in development of chemicallooping combustion:A review, Int. J. Chem. Eng. 2009(2009) 1-16. [62] P. Verma, A. Perera, R.J. Bartlett, Increasing the applicability of DFT I:Nonvariational correlation corrections from Hartree-Fock DFT for predicting transition states, Chem. Phys. Lett. 524(2012) 10-15. [63] N. Latelli, N. Ouddai, M. Arotcarena, P. Chaumont, P. Mignon, H. Chermette, Mechanism of addition-fragmentation reaction of thiocarbonyls compounds in free radical polymerization. A DFT study, Comput. Theor. Chem. 1027(2014) 39-45. [64] J.D. Chai, Role of exact exchange in thermally-assisted-occupation density functional theory:A proposal of new hybrid schemes, J. Chem. Phys. 146(4) (2017). [65] E.F.V. Carvalho, A.N. Barauna, F.B.C. Machado, O. Roberto-Neto, DFT study for the reactions of H atoms with CH3OH and C2H5OH, Int. J. Quantum Chem. 108(13) (2008) 2476-2485. [66] Q. Tan, W. Qin, Q. Chen, C. Dong, W. Li, Y. Yang, Synergetic effect of ZrO2 on the oxidation-reduction reaction of Fe2O3 during chemical looping combustion, Appl. Surf. Sci. 258(2012) 10022-10027. [67] Z. Cheng, L. Qin, M. Guo, M. Xu, J.A. Fan, L.-S. Fan, Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process, Phys. Chem. Chem. Phys. 18(2016) 32418-32428. [68] Y. Zhang, H. Zhao, L. Guo, C. Zheng, Decomposition mechanisms of Cu-based oxygen carriers for chemical looping with oxygen uncoupling based on density functional theory calculations, Combust. Flame 162(2015) 1265-1274. [69] Y. Feng, X. Guo, Study of reaction mechanism of methane conversion over Nibased oxygen carrier in chemical looping reforming, Fuel 210(2017) 866-872. [70] H. You, Y. Yuan, J. Li, L. Ricardez-Sandoval, A multi-scale model for CO2 capture:A nickel-based oxygen carrier in chemical-looping combustion, in:10th IFAC Symposium on Advanced Control of Chemical Processes, Shenyang, China, 2018. [71] W. Qin, C.F. Lin, D.T. Long, X.B. Xiao, C.Q. Dong, Reaction activity and deep reduction reaction mechanism of a high index iron oxide surface in chemical looping combustion, Acta Phys. -Chim. Sin. 31(2015) 667-675. [72] C. Lin, W. Qin, C. Dong, Reduction effect of a-Fe2O3 on carbon deposition and CO oxidation during chemical-looping combustion, Chem. Eng. J. 301(2016) 257-265. [73] J. Zhang, W. Qin, C. Dong, Y. Yang, Density functional theory study of elemental mercury adsorption on Fe2O3 [104] and its effect on carbon deposit during chemical looping combustion, Energy Fuel 30(2016) 3413-3418. [74] L. Wang, L. Wu, C. Dong, J. Zhang, W. Qin, Theoretical study on reactivity of Fe-based oxygen carrier with CH4 during chemical looping combustion, Appl. Mech. Mater. 345(2013) 298-301. [75] L. Huang, M. Tang, M. Fan, H. Cheng, Density functional theory study on the reaction between hematite and methane during chemical looping process, Appl. Energy 159(2015) 132-144. [76] J.J. Tang, B. Liu, Reactivity of the Fe2O3(0001) surface for methane oxidation:A GGA + U Study, J. Phys. Chem. C 120(2016) 6642-6650. [77] D. Chang Qing, Z. Xiao Lei, Y. Yong Ping, Density functional study of the C atom adsorption on the alpha-Fe2O3(001) surface, Chin. J. Struct. Chem. 30(2011) 17-24. [78] W. Qin, C.F. Lin, D.T. Long, J.Y. Wang, C.Q. Dong, Activity of Fe2O3 with a high index facet for bituminous coal chemical looping combustion:A theoretical and experimental study, RSC Adv. 6(2016) 85551-85558. [79] C. Dong, X. Liu, W. Qin, Q. Lu, X. Wang, S. Shi, Y. Yang, Deep reduction behavior of iron oxide and its effect on direct CO oxidation, Appl. Surf. Sci. 258(2012) 2562-2569. [80] W. Qin, Q. Chen, Y. Wang, C. Dong, J. Zhang, W. Li, Y. Yang, Theoretical study of oxidation-reduction reaction of Fe2O3 supported on MgO during chemical looping combustion, Appl. Surf. Sci. 266(2013) 350-354. [81] H. Zhao, Y. Zhang, Y. Wei, J. Gui, Understanding CuO-support interaction in Cu-based oxygen carriers at a microcosmic level, Proc. Combust. Inst. 36(2017) 4069-4077. [82] Z. Xu, H. Zhao, Y. Wei, C. Zheng, Self-assembly template combustion synthesis of a core-shell CuO@TiO2-Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes, Combust. Flame 162(2015) 3030-3045. [83] W. Li, Q. Chen, W. Qin, N. Wang, J. Lai, Interaction of CO with CuO and CuO/graphene:Reactions mechanism and the formation of CO2, Adv. Mater. Res. 354(2012) 279-285. [84] M. Wang, J. Liu, F. Shen, H. Cheng, J. Dai, Y. Long, Theoretical study of stability and reaction mechanism of CuO supported on ZrO2 during chemical looping combustion, Appl. Surf. Sci. 367(2016) 485-492. [85] M. Wang, J. Liu, J. Hu, F. Liu, O2-CO2 mixed gas production using a Zr-doped Cu-based oxygen carrier, Ind. Eng. Chem. Res. 54(2015) 9805-9812. [86] Y. Feng, X. Cai, X. Guo, C. Zheng, Influence mechanism of H2S on the reactivity of Ni-based oxygen carriers for chemical-looping combustion, Chem. Eng. J. 295(2016) 461-467. [87] L. Qin, Z. Cheng, M. Guo, J.A. Fan, L.S. Fan, Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes, Acta Mater. 124(2017) 568-578. [88] W.Y. Li, Q.L. Chen, Density functional theory study of oxygen carrier Mn3O4(001) surface reaction with CO, Adv. Mater. Res. 479(2012) 81-87. [89] X. Zhang, X. Song, Z. Sun, P. Li, J. Yu, Density functional theory study on the mechanism of calcium sulfate reductive decomposition by methane, Fuel 110(2013) 204-211. [90] V.P. Haribal, F. He, A. Mishra, F. Li, Iron-doped BaMnO3 for hybrid water splitting and syngas generation, ChemSusChem 10(2017) 3402-3408. [91] M.T. Curnan, J.R. Kitchin, Effects of concentration, crystal structure, magnetism, and electronic structure method on first-principles oxygen vacancy formation energy trends in perovskites, J. Phys. Chem. C 118(2014) 28776-28790. [92] F.N. Ridha, M.A. Duchesne, X. Lu, D.Y. Lu, D. Filippou, R.W. Hughes, Characterization of an ilmenite ore for pressurized chemical looping combustion, Appl. Energy 163(2016) 323-333. [93] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev. 112(2) (2012) 673-674. [94] J.M. Yu, L.H. Xie, J.R. Li, Y.G. Ma, J.M. Seminario, P.B. Balbuena, CO2 capture and separations using MOFs:Computational and experimental studies, Chem. Rev. 117(14) (2017) 9674-9754. [95] J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks:A new class of porous materials, Microporous Mesoporous Mater. 73(1-2) (2004) 3-14. [96] W.B. Xu, Q.Y. Ding, P.P. Sang, J. Xu, Z.M. Shi, L.M. Zhao, Y.H. Chi, W.Y. Guo, Effect of modified metal center in ligand for CO2 capture in novel Zr-based Porphyrinic metal-organic frameworks:A computational investigation, J. Phys. Chem. C 119(38) (2015) 21943-21951. [97] A. Torrisi, R.G. Bell, C. Mellot-Draznieks, Functionalized MOFs for enhanced CO2 capture, Cryst. Growth Des. 10(7) (2010) 2839-2841. [98] S. Keskin, T.M. van Heest, D.S. Sholl, Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations?, ChemSusChem 3(8) (2010) 879-891 [99] D. Frenkel, B. Smit, Understanding Molecular Simulation:From Algorithms to Applications, Vol. 1, Elsevier, 2001. [100] M. Fischer, R.G. Bell, Influence of zeolite topology on CO2/N2 separation behavior:Force-field simulations using a DFT-derived charge model, J. Phys. Chem. C 116(50) (2012) 26449-26463. [101] T.M. Becker, J. Heinen, D. Dubbeldam, L.C. Lin, T.J.H. Vugt, Polarizable force fields for CO2 and CH4 adsorption in M-MOF-74, J. Phys. Chem. C 121(8) (2017) 4659-4673. [102] S. Keskin, J. Liu, R.B. Rankin, J.K. Johnson, D.S. Sholl, Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal organic framework materials, Ind. Eng. Chem. Res. 48(5) (2008) 2355-2371. [103] N.A. Ramsahye, G. Maurin, S. Bourrelly, P. Llewellyn, T. Loiseau, G. Ferey, Charge distribution in metal organic framework materials:Transferability to a preliminary molecular simulation study of the CO2 adsorption in the MIL-53(Al) system, Phys. Chem. Chem. Phys. 9(9) (2007) 1059-1063. [104] J. Hu, Y. Liu, J. Liu, C. Gu, D. Wu, High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand, Microporous Mesoporous Mater. 256(2018) 25-31. [105] D.D. Borges, P. Normand, A. Permiakova, R. Babarao, N. Heymans, D.S. Galvao, C. Serre, G. De Weireld, G. Maurin, Gas adsorption and separation by the Albased metal-organic framework MIL-160, J. Phys. Chem. C 121(48) (2017) 26822-26832. [106] Y. Liu, J. Liu, M. Chang, C.G. Zheng, Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks, Fuel 95(1) (2012) 521-527. [107] J.M. Yu, P.B. Balbuena, Water effects on postcombustion CO2 capture in MgMOF-74, J. Phys. Chem. C 117(7) (2013) 3383-3388. [108] D. Nazarian, J.S. Camp, Y.G. Chung, R.Q. Snurr, D.S. Sholl, Large-scale refinement of metal-organic framework structures using density functional theory, Chem. Mater. 29(6) (2017) 2521-2528. [109] H. Demir, J.A. Greathouse, C.L. Staiger, J.J. Perry, M.D. Allendorf, D.S. Sholl, DFT-based force field development for noble gas adsorption in metal organic frameworks, J. Mater. Chem. A 3(46) (2015) 23539-23548. [110] A.K. Rappé, C.J. Casewit, K. Colwell, W.A. Goddard Ⅲ, W. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114(25) (1992) 10024-10035. [111] E. Haldoupis, J. Borycz, H. Shi, K.D. Vogiatzis, P. Bai, W.L. Queen, L. Gagliardi, J. I. Siepmann, Ab initio derived force fields for predicting CO2 adsorption and accessibility of metal sites in the metal-organic frameworks M-MOF-74(M=Mn, Co, Ni, Cu), J. Phys. Chem. C 119(28) (2015) 16058-16071. [112] R. Poloni, K. Lee, R.F. Berger, B. Smit, J.B. Neaton, Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites, J. Phys. Chem. Lett. 5(5) (2014) 861-865. [113] L. Vanduyfhuys, T. Verstraelen, M. Vandichel, M. Waroquier, V. Van Speybroeck, Ab initio parametrized force field for the flexible metal-organic framework MIL-53(Al), J. Chem. Theory Comput. 8(9) (2012) 3217-3231. [114] P.D.-O.V.A. Roberts, V. Osguthorpe, D. Wolff, M. Genest, A. Hagler, Structure and energetics of ligand binding to proteins:scherichia coli Dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins Struct. Funct. Bioinform. 4(1) (1988) 31-47. [115] J. Lange, F.G. de Souza, M. Nele, F.W. Tavares, I.S.V. Segtovich, G.C.Q. da Silva, J.C. Pinto, Molecular dynamic simulation of oxaliplatin diffusion in poly(lactic acid-co-glycolic acid). Part a:Parameterization and validation of the forcefield CVFF, Macromol. Theory Simul. 25(1) (2016) 45-62. [116] M. Pera-Titus, Porous inorganic membranes for CO2 capture:Present and prospects, Chem. Rev. 114(2) (2014) 1413-1492. [117] N. Du, H.B. Park, G.P. Robertson, M.M. Dal-Cin, T. Visser, L. Scoles, M.D. Guiver, Polymer nanosieve membranes for CO2 capture applications, Nat. Mater. 10(2011) 372-375. [118] D.S. Sholl, Y.H. Ma, Dense metal membranes for the production of high-purity hydrogen, MRS Bull. 31(10) (2006) 770-773. [119] P. Kamakoti, D.S. Sholl, A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory, J. Membr. Sci. 225(1) (2003) 145-154. [120] C. Ling, L. Semidey-Flecha, D.S. Sholl, First-principles screening of PdCuAg ternary alloys as H2 purification membranes, J. Membr. Sci. 371(1) (2011) 189-196. [121] N. Chandrasekhar, D.S. Sholl, Quantitative computational screening of Pdbased intermetallic membranes for hydrogen separation, J. Membr. Sci. 453(2014) 516-524. [122] H. Zhang, X. He, M. Zhao, M. Zhang, L. Zhao, X. Feng, Y. Luo, Tunable hydrogen separation in sp-sp2 hybridized carbon membranes:A first-principles prediction, J. Phys. Chem. C 116(31) (2012) 16634-16638. [123] C. Cazorla, S.A. Shevlin, Z.X. Guo, Calcium-based functionalization of carbon materials for CO2 capture:A first-principles computational study, J. Phys. Chem. C 115(22) (2011) 10990-10995. [124] M. Ostwal, R.P. Singh, S.F. Dec, M.T. Lusk, J.D. Way, 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation, J. Membr. Sci. 369(1) (2011) 139-147. [125] T. Wu, Q. Xue, C. Ling, M. Shan, Z. Liu, Y. Tao, X. Li, Fluorine-modified porous graphene as membrane for CO2/N2 separation:Molecular dynamic and firstprinciples simulations, J. Phys. Chem. C 118(14) (2014) 7369-7376. [126] M. Benzaqui, R.S. Pillai, A. Sabetghadam, V. Benoit, P. Normand, J. Marrot, N. Menguy, D. Montero, W. Shepard, A. Tissot, Revisiting the aluminum trimesate-based MOF (MIL-96):From structure determination to the processing of mixed matrix membranes for CO2 capture, Chem. Mater. 29(24) (2017) 10326-10338. [127] S. Keskin, D.S. Sholl, Assessment of a metal-organic framework membrane for gas separations using atomically detailed calculations:CO2, CH4, N2, H2 mixtures in MOF-5, Ind. Eng. Chem. Res. 48(2) (2009) 914-922. [128] P. Rochana, K. Lee, J. Wilcox, Nitrogen adsorption, dissociation, and subsurface diffusion on the vanadium (110) surface:A DFT study for the nitrogen-selective catalytic membrane application, J. Phys. Chem. C 118(8) (2014) 4238-4249. [129] Y. Wang, Q. Yang, J. Li, J. Yang, C. Zhong, Exploration of nanoporous graphene membranes for the separation of N2 from CO2:A multi-scale computational study, Phys. Chem. Chem. Phys. 18(12) (2016) 8352-8358. [130] Y. Wang, Q. Yang, C. Zhong, J. Li, Graphene-like poly(triazine imide) as N2-selective ultrathin membrane for postcombustion CO2 capture, J. Phys. Chem. C 120(50) (2016) 28782-28788. [131] P. Gomez-Alvarez, S. Calero, Highly selective zeolite topologies for flue gas separation, Chem. Eur. J. 22(52) (2016) 18705-18708. [132] D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, R. Hausler, Advances in principal factors influencing carbon dioxide adsorption on zeolites, Sci. Technol. Adv. Mater. 9(1) (2008) 013007. [133] T. Ho Viet, L. Grajciar, P. Nachtigall, O. Bludsky, C. Otero Arean, E. Frydova, R. Bulanek, Adsorption of CO2 in FAU zeolites:Effect of zeolite composition, Catal. Today 227(2014) 50-56. [134] O. Bludsky, M. Rubes, P. Soldan, P. Nachtigall, Investigation of the benzenedimer potential energy surface:DFT/CCSD(T) correction scheme, J. Chem. Phys. 128(11) (2008) 114102. [135] M. Fischer, R.G. Bell, A dispersion-corrected density-functional theory study of small molecules adsorbed in alkali-exchanged chabazites, Z. Krist. Cryst. Mater. 228(3) (2013) 124-133. [136] A. Tot, S. Armakovic, S. Armakovic, S. Gadzuric, M. Vranes, Kosmotropism of newly synthesized 1-butyl-3-methylimidazolium taurate ionic liquid:Experimental and computational study, J. Chem. Thermodyn. 94(2016) 85-95. [137] J.A. Steckel, Ab initio calculations of the interaction between CO2 and the acetate ion, J. Phys. Chem. A 116(47) (2012) 11643-11650. [138] D. Valencia-Marquez, A. Flores-Tlacuahuac, L. Ricardez-Sandoval, A controllability analysis of a pilot-scale CO2 capture plant using ionic liquids, AIChE J. 62(9) (2016) 3298-3309. [139] D. Valencia-Marquez, A. Flores-Tlacuahuac, L. Ricardez-Sandoval, Technoeconomic and dynamical analysis of a CO2 capture pilot-scale plant using ionic liquids, Ind. Eng. Chem. Res. 54(45) (2015) 11360-11370. [140] H. Sun, B. Qiao, D. Zhang, C. Liu, Structure of 1-butylpyridinium tetrafluoroborate ionic liquid:quantum chemistry and molecular dynamic simulation studies, J. Phys. Chem. A 114(11) (2010) 3990-3996. [141] S. Aparicio, M. Atilhan, A computational study on choline benzoate and choline salicylate ionic liquids in the pure state and after CO2 adsorption, J. Phys. Chem. B 116(30) (2012) 9171-9185. [142] S. Aparicio, M. Atilhan, M. Khraisheh, R. Alcalde, Study on hydroxylammonium-based ionic liquids. I. Characterization, J. Phys. Chem. B 115(43) (2011) 12473-12486. [143] R. Peverati, D.G. Truhlar, Improving the accuracy of hybrid meta-GGA density functionals by range separation, J. Phys. Chem. Lett. 2(21) (2011) 2810-2817. [144] O.A. Vydrov, T. Van Voorhis, Nonlocal van der Waals density functional:The simpler the better, J. Chem. Phys. 133(24) (2010) 244103. [145] K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8) (2010), 081101(R). [146] G.B. Damas, A.B.A. Dias, L.T. Costa, A quantum chemistry study for ionic liquids applied to gas capture and separation, J. Phys. Chem. B 118(30) (2014) 9046-9064. [147] T.C. Lourenco, M.F. Coelho, T.C. Ramalho, D. van der Spoel, L.T. Costa, Insights on the solubility of CO2 in 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide from the microscopic point of view, Environ. Sci. Technol. 47(13) (2013) 7421-7429. [148] G. Garcia, M. Atilhan, S. Aparicio, Assessment of DFT methods for studying acid gas capture by ionic liquids, Phys. Chem. Chem. Phys. 17(40) (2015) 26875-26891. [149] J.D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys. 10(44) (2008) 6615-6620. [150] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15) (2006) 1787-1799. [151] A. Mondal, S. Balasubramanian, A refined all-atom potential for lmidazoliumbased room temperature ionic liquids:acetate, dicyanamide, and thiocyanate anions, J. Phys. Chem. B 119(34) (2015) 11041-11051. [152] J.N. Canongia Lopes, J. Deschamps, A.A. Pádua, Modeling ionic liquids using a systematic all-atom force field, J. Phys. Chem. B 108(6) (2004) 2038-2047. [153] J.N. Canongia Lopes, J. Deschamps, A.A. Pádua, Modeling ionic liquids using a systematic all-atom force field-Additions and corrections, J. Phys. Chem. B 108(30) (2004) 11250. [154] J.N. Canongia Lopes, A.A. Pádua, Molecular force field for ionic liquids composed of triflate or bistriflylimide anions, J. Phys. Chem. B 108(43) (2004) 16893-16898. [155] B. Gao, J.X. Zhao, Q.H. Cai, X.G. Wang, X.Z. Wang, Doping of calcium in C-60 fullerene for enhancing CO2 capture and N2O transformation:A theoretical study, J. Phys. Chem. A 115(35) (2011) 9969-9976. [156] S.C. Zhuo, Y.M. Huang, J. Hu, H.L. Liu, Y. Hu, J.W. Jiang, Computer simulation for adsorption of CO2, N2 and flue gas in a mimetic MCM-41, J. Phys. Chem. C 112(30) (2008) 11295-11300. [157] A. Zukal, J. Jagiello, J. Mayerova, J. Cejka, Thermodynamics of CO2 adsorption on functionalized SBA-15 silica. NLDFT analysis of surface energetic heterogeneity, Phys. Chem. Chem. Phys. 13(34) (2011) 15468-15475. [158] T. Nittaya, P.L. Douglas, E. Croiset, L.A. Ricardez-Sandoval, Dynamic modelling and control of MEA absorption processes for CO2 capture from power plants, Fuel 116(2014) 672-691. [159] Z. He, L.A. Ricardez-Sandoval, Dynamic modelling of a commercial-scale CO2 capture plant integrated with a natural gas combined cycle (NGCC) power plant, Int. J. Greenhouse Gas Control 55(2016) 23-35. [160] J. Gaspar, L.R. Sandoval, J.B. Jørgensen, P.L. Fosbøl, Design, economics and parameter uncertainty in dynamic operation of post-combustion CO2 capture using piperazine (PZ) and MEA, Energy Procedia 114(2017) 1444-1452. [161] J. Gaspar, L. Ricardez-Sandoval, J.B. Jørgensen, P.L. Fosbøl, Controllability and flexibility analysis of CO2 post-combustion capture using piperazine and MEA, Int. J. Greenhouse Gas Control 51(2016) 276-289. [162] Z. He, M.H. Sahraei, L.A. Ricardez-Sandoval, Flexible operation and simultaneous scheduling and control of a CO2 capture plant using model predictive control, Int. J. Greenhouse Gas Control 48(2016) 300-311. [163] T. Islamoglu, S. Behera, Z. Kahveci, T.D. Tessema, P. Jena, H.M. El-Kaderi, Enhanced ca |
[1] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion[J]. 中国化学工程学报, 2023, 59(7): 1-8. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[3] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions[J]. 中国化学工程学报, 2023, 59(7): 200-209. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood[J]. 中国化学工程学报, 2023, 58(6): 53-68. |
[5] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels[J]. 中国化学工程学报, 2023, 58(6): 266-281. |
[6] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate[J]. 中国化学工程学报, 2023, 57(5): 1-9. |
[7] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
[8] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[9] | Haoshan Duan, Xi Meng, Jian Tang, Junfei Qiao. Prediction of NOx concentration using modular long short-term memory neural network for municipal solid waste incineration[J]. 中国化学工程学报, 2023, 56(4): 46-57. |
[10] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol[J]. 中国化学工程学报, 2023, 56(4): 70-79. |
[11] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine[J]. 中国化学工程学报, 2023, 56(4): 225-232. |
[12] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136. |
[13] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review[J]. 中国化学工程学报, 2023, 55(3): 277-292. |
[14] | Xueguang Li, Mengyan Yu, Changfa Zhang, Xiangtong Li, Guangqing Liu, Jianjun Dai, Chunbao Zhou, Yang Liu, Jie Fu, Yingwen Zhang, Bang Yao. Co-pyrolysis of soybean soapstock with iron slag/aluminum scrap, and characterization and analysis of their products[J]. 中国化学工程学报, 2023, 53(1): 25-36. |
[15] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism[J]. 中国化学工程学报, 2023, 53(1): 101-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||